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Abstract—Recent years have seen widespread adoption of
consumer Internet of Things (IoT) devices, offering diverse
benefits to end-users, from smart homes to healthcare monitoring,
but raising serious privacy concerns. To address this, securing
efforts, such as encrypting DNS, have been proposed.

In this paper, we study the effectiveness of such measures
in the specific context of ensuring IoT privacy. We introduce
a device identification attack against DNS-over-HTTPS-enabled
IoT devices. We conduct more than 25,000 automated experi-
ments across 6 public DNS resolvers and find that the proposed
attack can identify devices via DNS-over-HTTPS (DoH) traffic
with a 0.98 balanced accuracy. We point out padding as a
mitigation technique that reduces identification by a significant
33%. Additionally, we find that half of the evaluated DNS
resolvers do not adhere to the relevant specification, substantially
compromising user privacy.

Index Terms—IoT, Privacy, DNS, DoH, Device Identification

I. INTRODUCTION

In the domestic environment, the proliferation and diversity
of consumer Internet of Things (IoT) devices have surged, em-
bedding “smart” appliances into various aspects of daily life,
including entertainment, home automation, and healthcare.
Despite their convenience, these devices are notorious for their
poor security, posing significant risks to users and the broader
infrastructure [1]]. One of the primary privacy concerns is the
potential for personal information to be inferred from passive
observation of network traffic, leading to the identification,
tracking, and profiling of users’ activities, preferences, and
behaviors [2[]-[4]. This information leakage not only expands
the attack surface but also increases the likelihood of security
breaches or malicious activities [1].

Encrypted traffic for IoT devices is not enough to ensure
privacy [3[]. Despite encryption, recent research has explored
traffic-based IoT device identification through various network
activities, with DNS traffic emerging as a particularly effective
method to identify devices quickly and accurately based on a
limited number of DNS interactions [[6]—[8]].

There have been broad efforts to advocate for encrypted
DNS in IoT environments to enhance privacy [9]—[12]]. DNS-
over-HTTPS (DoH) has been introduced as a measure to
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protect the confidentiality of DNS activities by encrypting
DNS queries, potentially disrupting traditional DNS-based
identification techniques [|13|].

However, in this paper, we demonstrate that DoH alone is
insufficient for safeguarding user privacy in the context of
IoT. To illustrate potential privacy breaches, we propose and
execute a device identification attack against DoH-enabled IoT
devices. We reveal that associated metadata can still yield an
accuracy of 0.98 in identifying IoT devices, unlike other works
that utilize clear text DNS names [8] or multiple network
layers [14], [15]. Through the collection and analysis of a
diverse DNS dataset from numerous real IoT devices, we show
that even with DoH, a high degree of device identification
accuracy (0.93 balanced accuracy) can be achieved using only
two messages. These findings underscore that while encrypted
DNS is a critical step toward securing IoT environments, it is
not sufficient on its own.

The contributions of this paper are three-fold:

1) For IoT devices using DoH, we propose and execute
a successful device identification attack that achieves
high accuracy at scale using just the first few seconds
of traffic.

2) We assess padding as a potential countermeasure and
show that it significantly reduces device identification.

3) Finally, we expose a significant privacy breach, finding
that some resolvers do not follow padding specifications.
This vulnerability can be generalized to other technolo-
gies using misconfigured resolvers (e.g., web browsers)
and can go undetected by users.

The remainder of the paper is structured as follows. First, we
introduce the required background (Section [[) and formulate
our threat model (Section . Next, we present the IoT
testbed used to collect our dataset (Section [IV) before detailing
the identification attack (Section . Then, we detail our
evaluation methodology (Section and demonstrate that
DoH alone is not enough to protect IoT privacy (Section [VII).
We proceed to propose methods for improving DoH protection
(Section [VII-D). Finally, we discuss how these enhancements



could be implemented and the privacy implications of our

findings (Section |VIII).

The code of our tool and the data collected in our experi-
ments are publicly available at: https://github.com/SafeNetloT/
doh_iot.

II. BACKGROUND

In this section, we provide a brief overview of DNS for IoT
devices and DNS-over-HTTPS.
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Fig. 1. Example consumer IoT setup architecture.

A. DNS in consumer-grade loT

Whether for data transmission or for fetching software
updates, consumer IoT devices require communicating with
remote hosts to operate. These exchanges are performed over
IP, and the hosts are generally identified by a domain name.
One of the first actions of a newly powered on IoT device is
thus to use DNS to retrieve the IP address of a remote host.
As seen in Figure [T] in a typical domestic environment, the
device receives the DNS resolver address from a DHCP server
operating on the local networkﬂ Then, the device requests
IP addresses of remote application servers by sending their
domain name to the DNS resolver. IoT devices typically send
multiple DNS requests on the first minute of DNS traffic
following their first connection to fetch new updates and
report their states to the various application servers [7]]. Hence,
focusing on the first few minutes of communication provides
a good way of identifying devices.

B. DNS-over-HTTPS

In DNS, requests and responses are transmitted in clear-text,
exposing host names and IP addresses to any eavesdropper on
the path. In an effort to protect users’ privacy, the confiden-
tiality of DNS messages’ content can be secured using an
encryption layer. Two main approaches have been proposed:
DNS-over-HTTPS (DoH) [17]] or DNS-over-TLS (DoT) [18]],
which respectively encapsulate DNS traffic in HTTPS and
Transport Layer Security (TLS). From a privacy perspective,
DoH is preferred over DoT, among other reasons because its
features (in particular the port) are similar to generic HTTPS
traffic, hiding DoH in a larger quantity of traffic [19]E]

'In some rare cases, a DNS server is hard-coded in the device [16].
2In this paper, we present the investigation with DoH only due to space
constraints, but we observe similar findings with DoT.

DoH is currently supported by several major DNS actors
such as Cloudflare and Google, and implemented in all major
web browsers. DoH maintains the request/response model of
DNS but uses HTTP requests transmitted over a TLS-secured
channel. Clients query DNS resolvers by opening an HTTPS
session and transmitting DNS requests within HTTP POST or
GET requests. For both the request and the response, the DNS
payload is encoded in binary format as in the original DNS.

III. THREAT MODEL

To estimate the privacy protection offered by DoH, we
consider an identification attack based on the threat model
illustrated in Figure 2]

¥B
UA o 5
. . . A

IoT device Local router On path equipments DNS server

Fig. 2. Threat model, with an attacker A in the local network, and an external
attacker B on path.

Target. The target is any user of a consumer IoT device
communicating via DoH.

Adversary. The adversary is any party that can eavesdrop on
the DoH traffic between the IoT device and the resolver. In
practice, we consider two possible locations. First, an adver-
sary A can monitor communications on the local network. For
instance, eavesdroppers could have access to a malicious IoT
device sniffing the surrounding traffic [20], or a compromised
local router.

Second, we consider an adversary B outside the local net-
work, positioned between the local router and DNS resolver,
who tracks devices via uniquely assigned IPv6 addresses.
This scenario is relevant and plausible for several reasons.
The widespread adoption of IPv6 allows direct addressing of
devices behind a router, enabling one-to-one mapping without
relying on NAT [21]. To prevent tracking, both parts of
the IPv6 address can be dynamically updated. However, this
process typically occurs every 24 hours by default, which
still allows an eavesdropper to track devices within this
time frame [22]]. Moreover, several studies have shown that
correctly implementing IPv6 address rotation is complex, and
some vulnerabilities may persist, leading to robust tracking
through this protocol [21]], [23].

Furthermore, we assume the adversary only leverages DoH
traces. The rationale behind our approach is twofold: 1) we
evaluate the privacy impact of DoH alone, demonstrating its
sufficiency for conducting an accurate attack, and 2) other in-
formation such as MAC addresses may change over time [24],
or may not be available based on the adversary position in the
network.

Threat. The adversary is able to accurately identify which IoT
devices are used in a local network, such as a household.
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IV. 10T TESTBED

To capture DoH traffic from IoT devices, we use the testbed
shown in Figure [3] It consists of: (i) a server providing IP
connectivity to smart plugs and IoT devices, managing and
recording all of their network activity, (ii) a total of 34 IoT
devices, plugged into (iii) a set of smart plugs, and orchestrated
by (iv) a set of power on/off scripts (see Section [VI-A).

IoT Devices. We consider 34 consumer IoT devices that offer
a large variety across several categories and are representative
of a typical smart home network: Appliance (4), Baby Monitor
(2), Camera (5), Doorbell (4), Hub (2), Light (6), Pet (2), Plug
(1), Medical (1), Sensor (2) and Speaker (5). The complete list
of IoT devices is available in Table [

TABLE I
10T DEVICES PRESENT IN THE TESTBED.

Category | Device name (Device ID)
Alexa Swan Kettle (1), Coffee Maker Lavazza
Appliance (7), Cosori Air Fryer (8), Meross Garage Door

(20)
Boifun Baby (5), VTech Baby Camera (30)
Arlo Camera Pro4 (3), Blink Mini Camera (4),

Baby Monitor

Camera Google Nest Camera (13), SimpliCam (27),
Wyze Cam Pan v2 (33)
Doorbell Eufy. Chime (11), Google‘ Nest Doorbel] (14),
Reolink Doorbell (24), Ring Chime Pro (25)
Hub Aqara HubM2 (2), Google Nest Hub (15)
Govee Strip Light (16), Lepro Bulb (18), Lifx
Light Mini (19), NanoLeaf Triangles (21), Wiz Bulb
(32), Yeelight Bulb (34)
Medical Withings Sleep Analyser (31)

Pet Furbo Dog Camera (12), Petsafe Feeder (23a

Plug Tapo Plug (29)
Netatmo Weather Station (22), Sensibo Sky
Sensor
Sensor (26)
Speaker Bose Speaker (6), Echodot4 (9), Echodot5

(10), Homepod (17), Sonos Speaker (28)

DNS resolvers. While DoH is standardized, small differences
can be observed on the wire depending on the resolver [13]].
To diversify our approach and avoid relying solely on a single
implementation, we select 6 public DNS resolvers based on
their popularity due to their longevity [13|] and, for some,

their default integration in Firefox and Chromium: Google,
Cloudflare, Quad9, CleanBrowsing, NextDNS, and AdGuard.

V. DOH-BASED IDENTIFICATION ATTACK

To handle the high volume of DoH requests in our experi-
ments, we employ machine learning for device identification.
We begin by selecting effective features, showcase their ex-
traction, and then discuss our selected models.

A. Features selection

Encrypting traffic with DoH reduces available data, but
does not completely hide the length nor the time between
two DNS requests (inter-arrival times, IAT). Our intuition is
that such information varies per device and is discriminative
enough to identify them. This differs from prior methods using
clear-text DNS messages to access complete domain names
directly [7], [8].
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Fig. 4. Discriminative behavior of length and IAT.

For all devices in our dataset, we normalize message
length and IAT of DNS messages and study their respective
distribution. When looking at the size of messages in Figure ]
there is significant variance across device categories. For
instance, plugs and hubs have smaller message length than
sensors. Similarly, appliances show higher IAT values com-
pared to speakers and doorbells. IAT values remain low for
most device categories, hinting at relatively less effectiveness
for identification than message length. Hence, we select
both the 1ength and IAT of DNS messages as features.

B. Features extraction

For each power cycle, we collect device-specific DoH traffic
metadata. More precisely, we extract TLS Application Data
lengthﬂ and the TAT between DNS requests.

IAT and length raw features are saved as vectors along-
side the corresponding descriptive statistics: mean, variance,
standard deviation, skewness, and kurtosis. These synthetic
representations have proven effective in forming fingerprints
of network traffic [[6], [25]]. Such a broad approach enables
the machine learning model to automatically select the most
pertinent data representation.

3We disregard generic TCP handshake and TLS negotiation, focusing on
the request with the domain name and the response from the DNS resolver.



C. Model selection

The goal of the paper is not to propose a new machine-
learning architecture for device identification, but rather to
show that DoH is not perfect for IoT privacy protection.

We consider various well-known multi-class machine learn-
ing methods: Neural Networkﬂ Random Forest, K-Nearest
Neighbors, Complement Naive Bayes, Logistic Regression, C-
Support Vector (SVC): linear, one-vs-one, one-vs-the-rest.

We first split the dataset into an 80:20 ratio between
training and held-out data. Using Halving Random Search with
cross-validation [26], we efficiently explore a grid of hyper-
parameters and split the training data into 5 subsets of 80:20
proportion to prevent overfitting [27]. After finding the best
hyperparameters based on the balanced accuracy, we select
the best machine learning method, train the model using the
initial 80% of the dataset, and validate it against the held-out
20%. Doing so avoids any test snooping [27]] and shows the
model correctly generalizes for unseen data.

VI. EVALUATION METHODOLOGY

In this section, we present our data collection methodology
as well as the experimentation details.

A. Dataset collection

1) Power experiments: To maximize the capture of DNS
requests from [oT devices for our deployed testbed (see Sec-
tion [[V), we perform a power cycle during each experiment.
A single run consists of 5 minutes of network traffic captured
via the Mon(IoT)r tool [4], and 2 minutes of timeout to ensure
proper device shutdown.

We repeat the process 50 times daily for 15 days to ensure
coverage of diverse time periods for a longitudinal analysis.
This extended duration generates a robust dataset of 25,500
on-off experiments.

2) Encrypting DNS traffic: 10T devices do not support DoH
yet, requiring us to encrypt the clear-text DNS requests they
send. One original clear-text DNS request generates multiple
DoH requests, each for different resolvers and mitigation (cf.
Section [VII-D3). The high number of requests may prompt a
resolver to block them if not slightly delayed. Such constraints
make it difficult to introduce a proxy converting on-the-fly
clear-text requests to DoH.

Instead, our solution involves two steps: capturing the clear-
text traffic of IoT devices and replaying DNS requests using
DoH from the same vantage point. To maintain consistency,
the DNS requests are replayed at the same time they were
originally sent, minimizing discrepancies like DNS cache state
differences. Contrary to other steps in our pipeline, the replay
is only done once due to its time-intensive nature.

B. Handling dataset imbalance

Each device has its communication pattern: some generate
dozens of DNS requests every time they are switched on, while
others may only send a few queries from time to time. To

4We use the same layers as stated in previous works [7], only updating the
last layer to match the output classes.

address dataset imbalance, we apply random oversampling on
the training set, while keeping the evaluation set imbalanced
to reflect real-world conditions. The performance metric is
the balanced accuracy, calculating the average recall for each
class, addressing dataset imbalance [27]].

C. Experimental details

Unless specified otherwise, we average model performances
across all DNS resolvers and a single day of replay. We
manually confirm consistency across multiple days and choose
a random day as the baseline.

The machine learning pipeline is then run 15 times, each
with a different seed initializing the Pseudo-Random Numbers
Generators (PRNGs).

VII. RESULTS

In this section, we present the performance analysis of
device identification over our 34 devices dataset. We start
to examine the accuracy of the device identification attack.
Afterward, we discuss and analyze several enhancements that
potentially improve DoH’s privacy protection capabilities.

A. Comparison of machine learning methods

Table [II| showcases the performance of all machine learn-
ing methods initially tested. More specifically, it reports
the median value of averaged balanced accuracy over all
cross-validations. We further note that the same features and
datasets are used to compare each method. Random Forest
yields the best results, reaching ~0.97 balanced accuracy,
well above values obtained by other methods, including a
similar experimental setup by Thompson et al. based on a
Neural Network [7] (~0.89 only). This aligns with previous
empirical research, where Random Forest consistently outper-
formed other classifiers in extensive experiments with varied
datasets [28|]. Thus, we select the Random Forest method for
the remaining results.

TABLE II
PERFORMANCE OF MACHINE LEARNING METHODS DURING HALVING
RANDOM SEARCH CROSS-VALIDATION.

Machine learning method ~ Balanced accuracy

Random Forest 0.9684
Neural Network [7]] 0.8931
SVC (linear) 0.8861
Logistic Regression 0.8485
K-Nearest Neighbors 0.8462
SVC (one-vs-the-rest) 0.8433
SVC (one-vs-one) 0.8392
Complement Naive Bayes 0.5816

B. Device identification attack

Figure [5] shows the confusion matrix for all devices, with
predictions on the y-axis and actual devices on the x-axis,
normalized to correctly take into account the different number
of occurrences for each device. Anything outside of the
diagonal is a misclassification.
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Fig. 5. Devices (corresponding device IDs) confusion matrix.

False positives are minimal, yielding a balanced accuracy
of ~0.97 across devices. Interestingly, three devices sold by
the same company (Google’s Nest Camera (13), Nest Doorbell
(14), and Nest Hub (15)) are correctly classified. Likewise, the
two Echo Dot devices (9) and (10) only differ in version (4
and 5) while showing distinguishable enough traffic.

As seen in Figure [6] one message is enough to identify
the devices with a balanced accuracy of ~0.92. We obtain
similar results when looking at the time window of listening
instead of the absolute number of DNS requests. We notice
that just within 1 second after the switch-on, the same balanced
accuracy is achieved, allowing attackers to promptly assess the
targeted network’s content.

aipeap

1.0

0.9

e
)

’

e
N

Balanced accuracy
o
=)

05 12345678 9101112131415161718192021222324252627282930

Number of messages
Fig. 6. BA vs. number of requests after power cycle.

The high balanced accuracy reached using just one DNS
request questions the usefulness of the IAT (requiring at least
2 requests). In practice, we find that 1ength-based features
yield a 0.98 balanced accuracy when used alone versus 0.79
for IAT-based features across all resolvers. This can be
explained by multiple factors. First, as seen in Section [V-A]
IAT values are generally more concentrated than length.
Second, the number of DNS requests is low (a median of 5
per power cycle) which reduces the number of available IAT
values. Third, the IAT is subject to random variations both

in the time the DNS resolver takes to answer and the one a
device requires to handle incoming information.

TABLE III
IMPACT OF THE RESOLVERS ON PERFORMANCE.

Resolver Balanced accuracy
AdGuard 0.9820
Google 0.9788
Quad9 0.9781
Cloudflare 0.9778
NextDNS 0.9768
CleanBrowsing 0.9765

Finally, we investigate the identification performance with
respect to various DNS resolvers, illustrated in Table There
is no significant difference between DNS resolvers. All values
are stable, and such a tendency is verified for all the other
results. Without any other mitigation (see Section [VII-D3),
the identification attack works regardless of the resolver.

C. Attack persistence

A well-known phenomenon in machine learning is the
degradation of the model over time. As features continuously
drift away from their values at training, the initial model
yields worse and worse results [29]]. To evaluate the decrease
of performance of the model, we test it against new, unseen
data collected in the following days after training the model
of reference. Figure [7] shows our model maintains a mean
balanced accuracy of over ~0.91 across all resolvers over 15
days, with day O used a reference.
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D. Improving DoH protection

The above results show that our device identification attack
using DoH is potent and persistent, forcing us to examine
additional privacy-protecting measures. However, the options
to mitigate the attack are limited due to the low number of
raw features (IAT and length).

1) Delaying messages: Reducing the relevance of IAT
can be done by introducing delays between messages [30].
However, this approach is challenging for multiple reasons.
First, the IAT is closely linked to the application logic. For



instance, a device might first contact an update server and then
request the IP of an application server to upload data. The
presence and timing of the second request depend on the first
one. Second, IoT devices often rely on real-time applications
that cannot tolerate delays. Deploying a network middleware
to introduce delays could result in timeouts, potentially leading
to denial-of-service.

Moreover, detecting delay-tolerant requests would require
analyzing each underlying application, which is impractical.
For these reasons, we do not further explore delaying messages
as a privacy-preserving technique.

2) Merging DNS requests: Another way of impacting IAT
and length is to send multiple DNS requests in one message.
By default, DNS queries correspond to a single resource,
creating a one-to-one relationship between domain names and
observed packets. Merging all requests into a single packet
could hide which exact domains are queried. While the original
DNS RFC [31]] suggested supporting multiple resources in one
message, under-specification (e.g., handling partial resource
availability) led to poor resolver support. Despite standardiza-
tion attempts [32f], [33]], adoption was never achieved. Other
ideas, like forwarding queries in a mesh network [34], also
lack implementation. Therefore, merging queries is currently
out of scope but might be worth exploring in future work.

3) Padded DNS: The DNS request length can be par-
tially hidden by padding before encryption using the EDNS(0)
Padding Option [35]. According to RFC 8467, clients should
choose the “closest multiple of 128 octets” [36]. It also
presents ‘“Random-Block-Length Padding”, randomly select-
ing a block length to pad with. Other solutions, like padding up
to the maximal length or drawing from a known distribution,
result in excessive overhead or are impractical in diverse IoT
networks [30].

We implement two padding strategies by setting the
EDNS(0) option in the DNS request and we repeat the
methodology of replaying requests: padding to the closest 128-
byte block, or the closest block between [128,256, 384, 512]
bytes chosen randomly. We train the models of each resolver
using only the length of messages and compare the results
to models not using any padding. We also study a hypothetical
perfect protection, where the length is not leaking any
information, and an attacker can only leverage the IAT.

Figure |8| demonstrates significant reductions in balanced ac-
curacy for Cloudflare, Google, and AdGuard with both strate-
gies. For instance, using padding with Cloudflare results in a
~33% decrease. Interestingly, Random-Block-Length Padding
incurs a considerable overhead (125% additional bytes on
the wire compared to 67% for 128-byte block padding) but
does not improve results. A straightforward padding strategy
achieves comparable levels to the ideal scenario where only
the IAT is available.

Despite this, we note discrepancies between resolvers:
Quad9, CleanBrowsing, and NextDNS show minimal impact
from the padding. To investigate further, we train new models
using only lengths from request messages (IoT devices to
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Fig. 8. Impact of padding strategies.

resolvers) and others from answer messages (resolvers to
IoT devices). As anticipated, request messages are properly
padded, resulting in a significant drop in balanced accuracy for
all resolvers (from 0.97 to 0.64 on average). While RFC 7830
mandates padding DNS responses when the corresponding
query includes the Padding option [35]], compliance appears
inconsistent across resolvers.

Upon analyzing the traffic captures, we discover the fol-
lowing padding behaviors: Cloudflare and Google pad up to
a fixed value, respectively 707 encrypted bytes exactly and
~850 encrypted bytes; AdGuard roughly matches the request
padding, CleanBrowsing nearly never pads the answer, based
on unknown heuristics; NextDNS and Quad9 send an empty
ENDS(0) option containing no padding, virtually adding a few
bytes but producing a similar length than the original. These
findings align with Figure [8} models utilizing both request
and answer can leverage unaffected answer information to
correctly identify IoT devices.

VIII. DISCUSSION

In this section, we examine how padding can be imple-
mented according to our threat model and technical require-
ments. We also assess the impact of this approach on privacy
and discuss its limitations.

A. Implementing padding mitigation

If an adversary gains direct access to the local network
(e.g., via a compromised device or the router itself, as shown
by adversary A in Figure [2), the only feasible solution is to
deploy padded DoH directly on the IoT devices. However,
implementing such countermeasures on a large scale within
IoT devices presents significant challenges, and relying on
widespread manufacturer updates is impracticalE]

For an eavesdropper outside the local network (adversary
B in Figure [2), we recommend deploying a middlebox at the
router level to act as a local DNS resolver, relaying clear-text
DNS requests as padded DoH. Similar to our experimental

5The challenge of updating existing IoT devices highlights the importance
of implementing mitigations directly at the manufacturer level, anticipating
new deployments, or upgrading existing devices.



setup, IoT devices are typically assigned a default DNS
server via the Domain Name Server DHCP option [37]. For
this approach to work, devices must accept DHCP-assigned
DNS resolvers. In our experiments, 3-12% of devices did not
support thif], which aligns with values reported in previous
studies [16]. If devices ignore DHCP-assigned DNS resolvers,
a man-in-the-middle approach could be used to intercept clear-
text DNS and forward them as padded DoH. This method
could be implemented directly in routers, for example, through
an extension of the open-source software OpenWRT [38].

B. Implications for privacy

While DoH alone is a starting point, it is ultimately insuffi-
cient to fully protect privacy as we obtain a 0.98 identification
accuracy despite encryption. We also show that although miti-
gations are feasible for both manufacturers and end-users, their
effectiveness depends on DNS clients and resolvers adhering
to the standard, which is not currently the case.

Moreover, this issue impacts well-behaved clients that cor-
rectly send padded DoH requests and thus expect maximum
protection. We again highlight that DNS answers do not show
any form of warning when padding is asked for but ultimately
missing. Detecting this misconfiguration requires detailed net-
work trace analysis, or an automated client-side check of DN'S
options, as it cannot be easily identified otherwise.

As DoH is increasingly deployed in critical user-facing
applications like web browsers and IoT devices, it is essential
to ensure the highest level of privacy protection and provide
clear mechanisms to inform users about any missing features.

C. Limitations and future works

Our dataset includes 34 devices, which is more than pre-
vious works [7]], [16]. While reaching internet-scale in a lab
is not feasible and performance might differ in larger-scale
settings, our method adeptly distinguishes similar devices (see
Section [VII-B), implying robustness in broader deployments.
Additionally, we [will] open source our code and dataset for
other people to test their own setup.

Initial identification happens within minutes of device ac-
tivation, leveraging increased request rate post-switch-on [[7]].
Early traffic ensures consistent device fingerprinting but long-
term monitoring efficacy warrants further exploration.

Our threat model assumes that the DNS-over-HTTPS traffic
is already identified among other encrypted communications.
In practice, this traffic would be included in other HTTPS
traffic. Nevertheless, DNS traffic can be easily identified
thanks to the IP address of the destination (especially for
popular resolvers) or by leveraging the specific features of
messages [13]. While some IoT devices may bypass our
attack by using hard-coded IP addresses, this approach is not
recommended and unobserved in our dataset.

6We cannot confirm the resolver used by Google devices, as our DHCP
server advertises 8.8.8.8 and 8.8.4.4 as DNS resolvers.

D. Responsible disclosure
The padding misconfiguration was disclosed to relevant

DNS resolvers. Quad9 clarified that their front-end, dnsdist,
currently does not support paddingm

IX. RELATED WORKS

To the best of our knowledge, no other work has analyzed
the potential of DoH in protecting loT privacy. Table
summarizes studies addressing generic privacy leakages in
DNS, both through clear-text and DoH.

TABLE IV
SUMMARY OF RELATED WORKS ON DNS-BASED PRIVACY LEAKAGE.

Protocol
Traffic type Clear-text DNS ‘ DoH

[39] [30]], [40]
[71, 181 Our work

Web browsing
IoT

First, clear-text DNS itself offers no privacy by design. For
instance, Guha and Francis [39] were able to identify and track
users via geo-located IP addresses generated by their browsing
habits. Focusing on IoT traffic, clear-text DNS has been shown
to be exploitable for device identification, thus posing a risk to
privacy. Perdisci et al. 8] used the query URLs of a device’s
DNS requests to reliably identify devices. Using the same
feature, Thompson et al. [7|] focused on the first 5 minutes
after start-up, arguing that most communications occur during
this time window. Unlike these works, DoH does not allow
direct access to clear-text queries.

Second, while encrypting web traffic with DoH protects
DNS content, it does not completely prevent attacks. Siby et
al. [40] analyzed DoH traces and demonstrated that website
identification is still possible based on packet length and direc-
tion. Their work was extended by Bushart and Rossow [30],
who added timing to improve accuracy and discussed padding
as a countermeasure, while intentionally ignoring direction.
Our work combines both approaches, leveraging packet length
and timing. Additionally, we find that the direction is relevant
for IoT devices and discover that multiple DNS resolvers do
not adhere to current specifications, due to this feature.

Multiple studies have shown that IoT traffic is distinguish-
able from web browsing, particularly based on communication
timings and domain name lengths [8]], [[16]]. With the recent
push for encrypted DNS adoption in IoT networks [9]-[12],
potential differences between traditional and IoT traffic prompt
us to analyze the impact of DoH in this context.

Finally, numerous methods of IoT device identification
based on other protocols have been studied recently. For
instance, Meidan et al. [41] identified device brands and
models with 99% accuracy using IP addresses and ports.
Other works achieve similar results by leveraging features
from various protocols [14]], [[15]. These studies demonstrate
that DNS is not the sole source of privacy leakage in IoT
networks. However, contrary to our work, they are either

Thttps://github.com/PowerDNS/pdns/issues/10018
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confined to local networks, rely on volatile information such
as IP addresses, or depend on unencrypted DNS.

X. CONCLUSION

DNS-over-HTTPS in consumer IoT devices has been rightly
advocated to improve users’ privacy. However, we introduce
an attack that reliably identifies devices using only metadata,
such as message length and timing.

Using only DoH traffic, our method reliably classifies IoT
devices with a 0.98 balanced accuracy. It correctly identifies
individual devices from the same manufacturer or even two
devices using different versions, no matter the DNS resolver
targeted. We propose to enhance DoH with padding which
yields a ~33% decrease in accuracy. We also reveal that not
all DNS resolvers pad their answers, nullifying the mitigation
and putting the users’ privacy at risk. Through these findings,
we stress that the privacy of IoT devices cannot be guaranteed
by DoH alone, calling for additional measures.

To support further research, all software and data we pro-
duced as part of this work are publicly available at https:
//github.com/SafeNetloT/doh_iot.
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