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Abstract
Large Language Models (LLMs) are increas-
ingly deployed across multilingual applications
that handle sensitive data, yet their scale and
linguistic variability introduce major privacy
risks. Mostly evaluated for English, this paper
investigates how language structure affects pri-
vacy leakage in LLMs trained on English, Span-
ish, French, and Italian medical corpora. We
quantify six linguistic indicators and evaluate
three attack vectors: extraction, counterfactual
memorization, and membership inference. Re-
sults show that privacy vulnerability scales with
linguistic redundancy and tokenization gran-
ularity: Italian exhibits the strongest leak-
age, while English shows higher membership
separability. In contrast, French and Spanish
display greater resilience due to higher mor-
phological complexity. Overall, our findings
provide the first quantitative evidence that lan-
guage matters in privacy leakage, underscoring
the need for language-aware privacy-preserving
mechanisms in LLM deployments.

1 Introduction

Rapid advances in natural language processing
(NLP) have fueled its adoption in many industries
worldwide. Large language models (LLMs) such
as BERT and GPT have been pre-trained at great
expense on countless unlabeled datasets extracted
from the internet. While these models represent
incredible potential and promises, their large-scale
deployment and their complexity, as well as the
fact that they interact with and potentially influence
individuals, raise multiple security and privacy con-
cerns [10].

The attack surface on models is still poorly un-
derstood [32, 17, 11, 7]. A number of threats are
related to the memorization and possible leakage
of sensitive information used during model train-
ing, such as data reconstruction and membership
inference (i.e., identifying elements used during
the training or the fine-tuning). Memorization of

information by a model is not a problem in itself.
However, this memorization becomes a problem
when the training information is not generalized
enough by the model which reproduces large por-
tions of training data verbatim or discloses some
sensitive information [16, 34].

Most privacy risk assessment work has been con-
ducted on English texts [19, 28]. However, the
language of the texts, their structures, and their
characteristics inherently impact LLM memoriza-
tion and, consequently, privacy risks. Although the
language considered is well known to potentially
introduce bias in some results, the impact of lan-
guage on privacy risks has not yet been explored
to our knowledge. To overcome this limitation, in
this paper, we empirically explore the impact of
language on privacy risks associated with LLMs.
We also analyze the main characteristics and struc-
tures of each language and link them to various
privacy vulnerabilities. Specifically, we compre-
hensively assess the privacy of LLMs fine-tuned
on English, Spanish, French, and Italian medical
corpora using an extraction attack, a membership
inference attack and counterfactual memorization.
Results show that privacy vulnerability scales with
linguistic redundancy and tokenization granularity:
Italian presents the highest leakage, while English
has higher membership separability. In contrast,
French and Spanish show greater resilience due to
greater morphological complexity.

Overall, our results provide the first quantitative
evidence that language is a significant factor in
LLM privacy leakage. This highlights the need
to consider this factor in LLM deployment and
the design or configuration of privacy-preserving
mechanisms.

2 Background and Related Work

Large language models (LLMs) are trained on very
large datasets. For example, training chatGPT re-



quired years of crawling the Internet. Therefore,
a lot of personal data such as people’s addresses
was used during training. BERT models, on the
other hand, are typically fine-tuned for specific
tasks with domain-oriented data. In the medical
domain, datasets typically include sensitive patient
records. In both cases, the problem is that the mod-
els can regurgitate and leak information from the
training data after deployment [4, 9].

A central question in this context concerns the
extent to which language models memorize their
training data [5, 4, 26, 37, 27]. However, defining
memorization for language models is challenging,
and many existing definitions and notions have
been proposed depending on whether the memo-
rization concerns copyrighted content or personal
and sensitive content. In relation to privacy, we can
notably cite extractable memorization (Section 2.1)
and membership inference (Section 2.2).

2.1 Extractable memorization
Extractable memorization is a type of attack
that aims to use the model to infer information
from the original data [21]. This attack mainly
concerns text generation models, such as GPT.
These models are trained to produce text based
on what they have seen during training. However,
the model is not expected to be a basic parrot and
repeat exactly the sentences it has seen. This is
especially concerning if the data it is repeating
is sensitive. This has been shown to be the case
with GPT-2 for example, from which the names
and addresses of individuals can be extracted [6].
In [4], the term k − extractability is used to
refer to the sequences that can be extracted from
the model when an input sequence of length k
is requested. The lower the k, the easier it is
to extract the sequence. We therefore expect a
model to have the highest possible k on private
queries. This measure, however, does not capture
regurgitations that are not perfect, which can
lead to an illusion of no extractable memory.
Compressible memorization [27] extends this
definition by evaluating how short the minimal
requested sentence (or prompt) that elicits the
sequence.

2.2 Membership inference
Membership inference attack [3, 29, 14, 25, 31, 13]
(MIA) is a more common inference attack in Ma-
chine Learning (ML), which aims to infer whether

a specific data was used in the training data of a
target model. There are different techniques that
can be used to perform a MIA attack depending
on if the adversary has an access to the model pa-
rameters (i.e., white-box access), or access to a
ground-truth subset of member and non-member
samples. One technique consists to analyze the
loss of member and non member samples [36], an-
other one is to use multiple shadow models [29, 35]
trained to mimic the behavior of the target model
on an auxiliary dataset. An adversarial model is
then trained to infer membership from the loss or
from shadow models.

Another method [37] is based on comparing the
performance of the target model trained on a dataset
with a specific input, with a second model trained
without it. As ML models are supposed to learn
general information, one piece of data (even rare,
outlier or mislabeled samples) is not supposed to be
memorized and significantly changed the model’s
performance. By repeating this operation many
times with different subset, it is possible to identify
counterfactually memorized data.

3 Comparative Privacy Analysis

We perform a comparative privacy analysis across
four languages: English, Spanish, French,
and Italian, encompassing three complementary
threat models: (i) prompt-based extraction, where
we probe direct content leakage from generative
models; (ii) counterfactual memorization, where
we quantify how strongly individual texts are over-
fit by fine-tuned models; and (iii) membership in-
ference, where we test whether a model exposes
the presence of individual samples in its training
set. Together, these analyses provide a unified view
of surface-level and latent memorization behaviour
across languages and architectures.

3.1 Experimental Setup

Datasets. We employ a corpus to capture both
controlled and large-scale multilingual behavior.
The HiTZ Multilingual Medical Corpus 1 pro-
vides over 3 million translated medical sentences in
English, Spanish, French, and Italian. We se-
lect 10k sentences from the corpus in this analysis,
as it is large enough for privacy assessment while
accounting for the limited computational resources
that we have.

1
https://huggingface.co/datasets/HiTZ/Multilingual-Medical-Corpus

https://huggingface.co/datasets/HiTZ/Multilingual-Medical-Corpus


Model Selection and Training. We evaluate
both encoder-only (BERT-style) and decoder-only
(GPT-style) architectures to contrast their privacy
behaviors across tasks. Encoder models are as-
sessed through classification-based membership
inference and counterfactual memorization, while
decoder models are probed via generative extrac-
tion, providing a complementary view of implicit
versus explicit memorization dynamics.

For encoder-only architectures, we fine-tune one
pre-trained model per language on a medical clas-
sification task: bert-base-uncased2 (English),
dccuchile/bert-base-spanish-wwm-cased3

(Spanish), almanach/camembert-base4 (French),
and Musixmatch/umberto-commoncrawl-cased-v15

(Italian). For decoder-only architectures, used
in extraction attacks, we fine-tune distilgpt26

(English), DeepESP/gpt2-spanish7 (Spanish),
dbddv01/gpt2-french-small8 (French), and
LorenzoDeMattei/GePpeTto9 (Italian). All
models are trained using identical hyperparameters
(batch size, learning rate, and number of epochs)
across languages to ensure comparability. Each
dataset is randomly split into 80% for training
and 20% for testing, maintaining consistent data
exposure across experiments.

Attack Setup.

• Extraction attacks: We perform prompt-based
extraction attacks to evaluate explicit surface
leakage in generative models. Our approach con-
ditions a fine-tuned decoder model on partial text
fragments and measures how often it regener-
ates exact or near-exact spans from the training
corpus. We systematically vary the prompt frac-
tion in {5, 12, 25, 37} to examine how prompt
length influences extraction behaviour. Unlike
prior optimization-based extraction methods, our
strategy requires no gradient access and scales
efficiently across multiple languages. We ad-
ditionally quantify the number and diversity of
unique extractions as a function of prompt size,
providing a direct signal of language-dependent
memorization risk.

2
https://huggingface.co/bert-base-uncased

3
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased

4
https://huggingface.co/almanach/camembert-base

5
https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1

6
https://huggingface.co/distilgpt2

7
https://huggingface.co/DeepESP/gpt2-spanish

8
https://huggingface.co/dbddv01/gpt2-french-small

9
https://huggingface.co/LorenzoDeMattei/GePpeTto

• Counterfactual memorization: We quantify
instance-level overfitting by computing a coun-
terfactual memorization score for each document
in the HiTZ Multilingual Medical Corpus. Each
model is fine-tuned on a 9-class length-binned
text classification task, where labels correspond
to decile-based token length bins. For each text,
the counterfactual score is defined as the differ-
ence between the mean sigmoid loss of models
that saw the text during training and those that
did not. This metric extends standard memo-
rization analysis by capturing the intensity of
instance-level overfitting. We train an ensemble
of ten independently seeded sequence classifiers
per language, based on BERT-family encoders,
to ensure stable counterfactual estimates. The
95th percentile of the resulting score distribution
is used to flag highly memorized instances. We
further compute empirical CDFs over surface-
level statistics (e.g., sentence length, word count,
unique words) to relate memorization strength
to linguistic and morphological characteristics
(Table 1).

• Membership inference: We evaluate member-
ship inference on the same fine-tuned classifi-
cation models, using shadow models trained to
replicate the target model’s learning dynamics.
Attackers exploit differences in prediction con-
fidence distributions to distinguish “in-training”
versus “out-of-training” samples. This setup tar-
gets encoder-only architectures and quantifies
privacy leakage arising from confidence calibra-
tion and representation separability. Since the un-
derlying classification task is language-agnostic
(based on text length bins), it provides a con-
trolled baseline for assessing how linguistic struc-
ture influences susceptibility to membership in-
ference.

3.2 Extraction Attack

We probe surface-level memorization through
prompt-conditioned extraction attacks, where par-
tial context is provided to a generative model to
elicit verbatim continuations. Figure 1 quantifies
the number of unique extractions across languages
and prompt sizes, while Figure 2 reports the cumu-
lative distribution of text lengths for all sentences
versus those appearing among extracted samples
(with a short 5-word prompt).

We observe marked cross-linguistic differences.
At minimal prompts (i.e., 5 words), English pro-

https://huggingface.co/bert-base-uncased
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/almanach/camembert-base
https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1
https://huggingface.co/distilgpt2
https://huggingface.co/DeepESP/gpt2-spanish
https://huggingface.co/dbddv01/gpt2-french-small
https://huggingface.co/LorenzoDeMattei/GePpeTto


Figure 1: Number of unique extractions across lan-
guages and prompt sizes: longer prompts increase ex-
traction risk in general.

duces fewer than 1,000 unique extractions, sug-
gesting relatively low surface-level leakage under
constrained context. In contrast, Spanish already
yields over 6,000 unique spans, and Italian sur-
passes 8,000, indicating greater sensitivity to min-
imal cues. As prompt size increases to 12 and 25
words, Italian extractions rise sharply, peaking at
over 13,000 unique spans, while Spanish stabilizes
around 7,000. French, by comparison, remains
substantially lower throughout, increasing from
roughly 1,200 to 2,700 extractions. These patterns
reveal that certain languages (ES, IT) sustain or
amplify leakage as prompts grow, whereas English
shows an early saturation and subsequent decline
in extraction counts with larger context windows.

Moreover, further analysis reveals that longer
texts are more prone to extraction even under short
prompts. As illustrated in Figure 2, the CDFs for
the extracted texts (i.e., using 5-word prompts)
closely follow or are slightly shifted to the right of
the overall corpus distributions, indicating that the
extracted samples tend to contain more words on
average. This demonstrates that extraction behav-
ior with short prompts is not biased by sentence
length: even minimal context captures the same
cross-linguistic tendencies observed in Figure 1.
Consequently, the higher number of extractions
in Spanish and Italian cannot be attributed to
prompt selection, but rather reflects their intrinsic
linguistic and structural susceptibility to memoriza-
tion.

3.3 Counterfactual Memorization
The counterfactual memorization score measures
the change in loss between models that saw a text
during training and those that did not. This met-

Figure 2: Cumulative distribution of text lengths for all
versus extracted samples.

Figure 3: Distribution of counterfactual memorization
scores across languages. Most points lie near zero; EN
and IT display extended positive tails, FR shows rare
high outliers, and ES remains the most compact.

ric captures how strongly each instance is memo-
rized relative to a counterfactual baseline. Figure 3
reports the score distributions across languages,
while Figure 4 confirms that label distributions are
balanced and therefore do not confound memoriza-
tion effects.

The results reveal that most samples cluster
around zero in all languages, indicating that the
majority of instances are not explicitly memo-
rized. However, language-specific deviations ap-
pear in the positive tail of the distribution. Spanish
exhibits the narrowest spread, with over 95% of
samples scoring below 0.02, suggesting minimal
overfitting and strong generalization. English and
Italian, by contrast, show moderate positive tails
extending up to 0.08–0.10, indicating that 5–8%
of samples exhibit measurable memorization. Fi-
nally, French displays a distinctive pattern: while
its median score remains low, it contains rare but



(a) English (b) Spanish (c) French (d) Italian

Figure 4: Label distributions used for memorization scoring: balanced bins across languages confirm that score
variations are not due to class imbalance.

(a) English (b) Spanish (c) French (d) Italian

Figure 5: Separability of “in” vs. “out” samples at epoch 30 under MIAs: larger gaps indicate higher risk. English
exhibits the most distinct separation between training and test data, while French shows the greatest overlap,
indicating stronger generalization.

pronounced outliers that exceed 0.15, pointing to
isolated cases of high-confidence recall.

We further analyze the label distributions used
in the counterfactual memorization experiments
to verify dataset balance across languages (Fig-
ure 4). Although minor variations exist, all lan-
guages maintain a roughly uniform spread over the
nine label bins, ensuring that observed memoriza-
tion trends are not artifacts of label skew.

Quantitatively, English exhibits a mildly-
skewed distribution. Spanish shows a similar
pattern but with a more pronounced peak at la-
bel 0 (∼1,500 texts) and a small dip around la-
bel 1 (∼400 texts). French follows a nearly identi-
cal trend, with its most frequent label 0 (∼1,300+
texts) and the least represented label 1 (∼350−400
texts). In contrast, Italian displays the most bal-
anced profile, with all labels ranging between 300
and 450 samples and no extreme outliers.

These distributions confirm that the memoriza-
tion differences reported in Figure 3 cannot be at-
tributed to unbalanced label frequencies. While
English, Spanish, and French exhibit mild con-
centration toward lower labels, all maintain suffi-
cient coverage of the label space to ensure unbiased
counterfactual comparisons. The flat histogram

of the Italian dataset further demonstrates that
even with a highly uniform label representation,
moderate memorization persists, reinforcing that
linguistic and structural factors, rather than label
imbalance, drive the cross-lingual variability ob-
served in memorization strength.

3.4 Membership Inference Attack

We evaluate the susceptibility of our models to
membership inference attacks (MIAs) by analyz-
ing whether an adversary can distinguish samples
that were part of the training set (in) from those that
were not (out). Our analysis focuses on encoder-
based models (BERT-family) fine-tuned for classifi-
cation in each language.

To simulate a realistic adversary, we train a
shadow model following the same architecture and
optimization procedure as the target model but us-
ing a controlled dataset composed of both training
(in) and test (out) samples. The attacker then ob-
serves the per-sample confidence scores produced
by the shadow and target models to learn a deci-
sion boundary distinguishing “in” from “out” sam-
ples. This boundary is learned using an XGBoost
classifier trained on confidence distributions across
epochs (1–30), as the separability between in and



out typically increases with training progression.

Training dynamics. As expected, we observe
that model confidence for training data progres-
sively diverges from that of unseen data as training
advances. Early in training (epochs 1–5), the over-
lap between in and out confidence distributions
remains substantial, making inference difficult. By
epoch 30, however, clearer separation emerges,
with train samples forming high-confidence clus-
ters and test samples occupying lower ranges. This
evolution highlights how overfitting amplifies mem-
bership signal leakage over time.

Cross-lingual separability. Figure 5 visualizes
the final in/out confidence distributions at conver-
gence. English exhibits the most distinct sepa-
ration, where the attacker achieves an MIA accu-
racy of 0.59, with train-set precision of 0.54 and
test-set precision of 0.98. This indicates consid-
erable memorization effects and high confidence
calibration differences between seen and unseen
samples. Spanish and Italian occupy an in-
termediate regime, achieving accuracies around
0.51–0.54, where partially overlapping distribu-
tions still expose mild but detectable membership
traces. French demonstrates the tightest overlap
between distributions, yielding the lowest attack
accuracy (0.50), suggesting better generalization
and minimal membership signal leakage.

Implications. These findings highlight a positive
coupling between overfitting and membership vul-
nerability: models that exhibit pronounced mem-
orization behavior (e.g., English, Italian) are
also the most susceptible to membership inference.
Languages like French, which generalize more
smoothly, naturally mitigate this exposure.

4 Privacy Implications of the Language
Structures

4.1 Language Characteristics

To capture linguistic properties that may affect
memorization and extraction, we compute six struc-
tural and morphological indicators. Each metric
highlights a specific typological feature that could
modulate privacy leakage in LLMs.

Morphological complexity. We measure the av-
erage number of inflectional variants per lemma,
reflecting how flexional morphology increases lin-

guistic variability [15, 2, 24, 8]:

M =
1

|V |
∑
w∈V

|I(w)|, (1)

where V is the lemma vocabulary and I(w) de-
notes the set of inflected forms of lemma w.

Syntactic entropy. This measures word-order
variability and structural diversity in dependency
relations [12, 23, 18]:

S = −
∑
r∈R

P (r) logP (r), (2)

where R is the set of syntactic relations and P (r)
their empirical probabilities.

Redundancy and predictability. We quantify
local contextual predictability through mutual in-
formation between neighboring tokens [33, 20]:

R =
1

N

N∑
i=1

I(wi;wi−1, wi+1), (3)

where I denotes mutual information and N the
number of tokens. Higher R implies greater repeti-
tion and potential for memorization.

Tokenization characteristics. The average word
length serves as a proxy for token fragmentation
and morphological density [30]:

T =
1

|W |
∑
w∈W

len(w), (4)

where len(w) represents the character length of
word w.

Capitalization and orthography. We estimate
the proportion of capitalized words, which often
correspond to named entities and thus correlate
with identifiable content [1]:

C =
1

|W |
∑
w∈W

1[isCapitalized(w)]. (5)

Vocabulary richness. Lexical diversity is repre-
sented by the type–token ratio, reflecting the pro-
ductivity and variability of vocabulary [22]:

D =
|V |
|W | , (6)

where |V | is the number of unique word types and
|W | the total number of tokens.

These indicators collectively reveal the typolog-
ical contrasts that underlie variations in memo-
rization and extraction behaviors across languages.



Languages characterized by higher morphological
complexity and more flexible syntax tend to exhibit
distinct privacy-leakage patterns compared to more
analytically structured ones.

Specifically, redundancy in linguistic structure
amplifies memorization risk by reinforcing re-
peated patterns; a high capitalization rate signals
greater exposure to named entities such as persons
or locations, heightening the risk of sensitive data
leakage; rich vocabulary and morphological vari-
ability may introduce natural obfuscation but simul-
taneously complicate de-identification; and finally,
elevated syntactic entropy reflects greater structural
diversity, increasing the likelihood of memorizing
unique linguistic sequences.

4.2 Comparing Language Characteristics
We compare linguistic metrics across English,
Spanish, French, and Italian medical corpora from
the HiTZ dataset to assess how language structure
influences privacy leakage during LLM training.
Table 1 presents six key linguistic indicators used
in this comparison.

To further characterize structural variability, we
analyze sentence and word length distributions
across languages (Figures 6 and 7). Quantitatively,
Italian exhibits the longest average sentence
length (µsent ≈ 23.4 words), followed by English
(21.8), Spanish (20.7), and French (18.9). This
trend aligns with the higher redundancy and mor-
phological density of Italian, suggesting broader
contextual spans that may promote memorization.

Similarly, word-length analysis reveals that
Italian and Spanish have longer average words
(µword = 5.99 and 5.79, respectively), while
French (5.48) and English (5.77) remain slightly
shorter and more evenly distributed. Italian’s
longer words, coupled with its high redundancy
(8.69), increase token-level repetition under sub-
word tokenization, potentially heightening privacy
risk. In contrast, French’s shorter sentences and
lower capitalization rate (7.3%) suggest a lower
likelihood of memorizing personally identifiable
terms or structured entities.

From a privacy standpoint, these quantitative
differences highlight distinct trade-offs across lan-
guages. Italian shows the strongest exposure
indicators: highest redundancy (8.69), longest sen-
tences, and most extended word lengths, suggesting
increased risk of memorization and entity leak-
age. English combines high syntactic entropy
(2.90) and capitalization rate (14.5%), which could
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Figure 6: Sentence length distributions across lan-
guages: Italian and English exhibit longer sentences,
consistent with higher redundancy and memorization
potential.
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Figure 7: Word length distributions across languages:
Italian and Spanish show heavier right tails, indicat-
ing longer lexical units and denser morphology.

heighten exposure to named entities and rare phras-
ing patterns. Spanish, while morphologically simi-
lar to Italian, demonstrates lower redundancy (7.38)
and capitalization (9.7%), implying moderate leak-
age susceptibility. French then exhibits the highest
morphological complexity (1.34) but lowest vocab-
ulary richness (0.078), favoring regular inflectional
patterns that may mitigate verbatim recall.

4.3 Linking Linguistic Characteristics to
Privacy Vulnerabilities

When contextualized with the corpus-level statis-
tics from Table 1 and the empirical findings in Sec-
tions 3.2–3.4, a consistent picture emerges linking
linguistic structure to privacy vulnerability. Leak-
age patterns observed across the three attack fam-
ilies: extraction, memorization, and membership
inference, closely follow the typological properties
of each language.

In the extraction attack (Section 3.2), both



Table 1: Linguistic metrics across four languages in the HiTZ multilingual medical corpus.

Morph. Comp. Synt. Ent. Redundancy Avg. Word Len. Cap. Rate Vocab. Rich.

English 1.2227 2.9025 7.7728 5.7750 0.1446 0.1148
Spanish 1.2257 2.8119 7.3764 5.7939 0.0977 0.1269
French 1.3454 2.8632 7.2191 5.4756 0.0733 0.0776
Italian 1.1559 2.7822 8.6942 5.9922 0.1538 0.2193

Spanish and Italian exhibit steady growth in
leakage as prompt length increases. This behavior
aligns with their higher redundancy (R = 7.38
and 8.69, respectively) and longer average word
lengths (5.79 and 5.99), which encourage surface-
level repetition and amplify memorization under
subword tokenization. English, while less re-
dundant, demonstrates pronounced leakage for
short prompts, consistent with its high syntactic
entropy (S = 2.90), since even limited context
can trigger memorized continuations. In contrast,
French, with its greater morphological complex-
ity (M = 1.35) and shorter average sentences
(µsent ≈ 18.9), displays a dampened extraction
curve, suggesting that rich inflectional variability
reduces exact sequence recall.

Results from the counterfactual memorization
experiment (Section 3.3) reinforce these trends.
Italian again shows the strong memorization
signal, driven by its high redundancy and longer
tokens that form stable phrase structures reused
across contexts. English follows closely, where
strong syntactic regularities facilitate verbatim re-
call of distinct patterns. Spanish exhibits low
memorization; its structural diversity dilutes recur-
rence, while French, due to its inflectional diver-
sity, maintains a relatively low recall rate for exact
sequences, confirming that morphological variabil-
ity provides natural resistance to overfitting.

Finally, under the membership inference at-
tack (Section 3.4), English fine-tunes show the
clearest separation between “in” and “out” samples,
indicating strong memorization and poor general-
ization. Italian also displays detectable separa-
bility, though less pronounced, whereas Spanish
and especially French exhibit overlapping confi-
dence distributions, reflecting smoother generaliza-
tion and weaker membership signals. These trends
parallel the corpus-level differences in redundancy
and morphological diversity.

Overall, the quantitative correspondence be-
tween linguistic structure and empirical leakage
across all attack types highlights that language it-
self is a determinant of privacy risk. Languages

with longer lexical units, higher redundancy, and
predictable syntax (English, Italian) exhibit
greater memorization and vulnerability to inference
attacks. In contrast, morphologically rich and less
redundant languages (French, Spanish) demon-
strate improved privacy resilience, though longer
prompts can still elevate extraction exposure.

5 Limitations

This study empirically examines how linguistic
structure influences privacy leakage in LLMs, yet
several limitations remain. Our experiments were
conducted on relatively small multilingual medical
corpora, which may limit generalizability; extend-
ing to larger datasets would improve robustness but
requires substantial computational resources. The
limited number of languages considered is also
a limitation. While we considered representative
encoder and decoder architectures, exploring di-
verse model families and fine-tuning configurations
could reveal further nuances. Finally, future work
could assess fully multilingual models, rather than
separately fine-tuned monolingual ones, to capture
cross-lingual transfer effects, though this entails
significant computational demands.

6 Conclusion

We conduct a cross-linguistic analysis of privacy
leakage in LLMs trained on distinct languages,
showing that linguistic structure strongly influences
model vulnerability. Across English, Spanish,
French, and Italian, and under extraction, coun-
terfactual memorization, and membership infer-
ence attacks, we observe clear structural effects:
Italian shows the greatest leakage due to high re-
dundancy and longer sentences, while English ex-
hibits higher membership separability from greater
syntactic entropy. In contrast, French and Spanish
remain more resilient through richer morphology.
These findings underscore the need for language-
aware, structure-adaptive privacy defenses.
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