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ABSTRACT
This paper presents NemFi: a trace-driven WiFi emulator. NemFi
is a record-and-replay emulator that captures traces representing

real WiFi conditions, and later replay these traces to reproduce

the same conditions. In this paper, we demonstrate that the state-

of-the-art emulator that was developed for cellular links cannot

emulate WiFi conditions. We identify the three key differences

that must be addressed to enable accurate WiFi record-and-replay:

WiFi packet losses, medium-access control, and frame aggregation.

We then extend the existing cellular network emulator to support

WiFi record-and-replay. We evaluate the performance of NemFi
via repeated experimentation across different WiFi conditions and

for three different types of applications: speed-test, file download,

and video streaming. Our experimental results demonstrate that

average application performance over NemFi and real WiFi links is

similar (with less than 3% difference).
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1 INTRODUCTION
WiFi is increasingly more popular due to the widespread use of

mobile devices (e.g. smartphones, laptops, tablets, smartwatches,

etc.)[7]. The quality of WiFi connectivity varies drastically from

place to place and over time due to several factors such as poor net-

work configuration, old equipment, fluctuating demands of users,

congestion, and coverage. As many of today’s applications and

services will be running over WiFi, it is crucial to evaluate the

performance of these applications in different network conditions.

The variability of WiFi makes it hard to predict how an appli-

cation/service will work with just a few experiments. Testing in

one/few settings tells little of how a service will behave when de-

ployed at a large scale over a long period.

There are different options for evaluating networked applications

and services before deployment: simulation, testbed experiments,

and emulation. Simulation is the easiest way to experiment with

different wireless network conditions. Network simulation tools

(e.g. NS-2 [3], NS-3 [1], OMNET++ [9], to name a few) are used to

mimic the behavior of wireless networks in a software-based envi-

ronment. The advantages of simulation are repeatability, control,

configurability, and scalability. The main limitation of simulation

tools, however, is that they require the user to tune the different

parameters, e.g. level of interference, congestion, loss rate (among

others), which may not reflect real wireless network conditions.

Even with good parameter settings, a simulator cannot capture the

complex inter-dependencies of real systems.

At the other end of the spectrum, there is testbed experimenta-

tion, where developers evaluate their applications over deployed

wireless links either over testbeds or by relying on volunteer testers.

The results of such experiments capture the impact of real wireless

network conditions. The major disadvantage of experimentation is

that it offers no repeatability, and is difficult to scale. The variability

of wireless networks makes it hard to reproduce results. The results

of experimentation are, therefore, hard to interpret and one cannot

distinguish the issues with application versus wireless conditions.

Finally, trace-driven emulation [6, 10] involves recording traces

in deployed wireless networks and later replay these traces to re-

produce the recorded network conditions. The clear benefits of

trace-driven emulations are its ability to capture real network con-

ditions and the repeatability of the experiments. One can run the

same network conditions several times, which eases application or

system debugging, and enables comparative analysis of different

applications or protocols over the same network conditions.

While there exist trace-driven emulators for cellular [10] and

HTTP traffic [6], to the best of our knowledge, there exists no such

solution forWiFi. Adapting cellular emulation forWiFI is not trivial

due to the many fundamental differences betweenWiFi and cellular,

in particular, in how theymanage access to the shared medium, how

they react to packet loss, and other technology-specific protocols.

These differences makes the existing cellular network emulator

unable to accurately emulate WiFi.

Motivated by the advantages of trace-driven emulation, and the

lack of such a tool for WiFi, we design and implement NemFi:1

a trace-driven emulator for WiFi. NemFi extends the state-of-the-
art cellular emulator [10] to support accurate WiFi emulation. We

begin by identifying the challenges of trace-driven emulation for

WiFi. These challenges help us identify the key design decisions of

NemFi’s record-and-replay modules. We demonstrate through ex-

tensive evaluations that NemFi accurately emulates WiFi in various

network conditions.

The main contributions of this paper are therefore:

• We identify the challenges of trace-driven emulation for

WiFi.

1NemFi’s source code, and network traces: https://gitlab.inria.fr/mabhishe/nemfi
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• We introduce a novel trace-driven emulator for WiFi, which

makes it possible to evaluate network applications and ser-

vices over emulated WiFi conditions.

The rest of this paper is organized as follows. In Section 2, we

provide a brief overview of the existing trace-driven cellular emu-

lator, followed by the list of challenges for designing a trace-driven

emulator for WiFi. In Section 3, we explain the design of NemFi. In
Section 4, we validate the accuracy of NemFi’s design via a series of

experiments for various types of applications and mobility scenar-

ios. We conclude the manuscript in Section 5 and provide future

research directions.

2 BACKGROUND AND MOTIVATION
This section first introduces the record-and-replay emulator for cel-

lular networks developed by Winstein et al. [10] and then discusses

the challenges to adapt this emulator to WiFi.

2.1 Trace-Driven Emulation for Wireless
Networks

Winstein et al. [10] introduced a cellular network emulator to eval-

uate their new transport protocol for low-latency high-throughput

transmission over wireless cellular networks. Their proposed emu-

lator consists of two main modules: a record module, known as the

Saturator, designed to record a trace of cellular network variabil-

ity. This trace is then passed to the replay module, CellSim, which

replays the trace to reproduce the captured network conditions.

Concretely, the Saturator is a software module running on two

end-hosts connected to each other via a cellular interface. During

record, the Saturator aims to saturate the uplink and downlink

channels by pushing MTU-sized UDP packets and recording the

time each packet is received on the other end. These timestamps,

also referred to as “delivery opportunities”, represent the timeMTU-

sized packets were able to effectively cross the cellular link (in each

direction). During replay, Cellsim runs on a PC connected to two

communicating end-hosts via Ethernet. CellSim listens for each

incoming packet (in either direction), consults the trace of delivery

opportunities, and delay packets accordingly to match the time

packets were effectively delivered during the record.

The emulator proposed by Winstein et al. has been specifically

designed to emulate cellular networks, and hence cannot accurately

record and replayWiFi variability. In particular, in cellular networks,

there are per device queues. If the bottleneck is the cellular network,

then the congestion at the base-station is mostly self-induced and

the effect of cross-traffic is muted. Moreover, in cellular networks,

the uplink and downlink communications take place on different

time slices and do not interfere with each other. In WiFi, on the

other hand, the medium is shared and hence delivery opportunities

are shared between the upstream and the downstream flows as well

as with competing traffic. Further, LTE base-stations hold much

larger queues than WiFi and allow for more re-transmissions. In

WiFi, the queues are smaller and packet losses more common.

2.2 Challenges of WiFi Network Emulation
The design of a trace-driven emulator for WiFi brings a number of

challenges.

CapturingWiFi delivery opportunities: Aswe havementioned
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Figure 1: a) Throughput and packet loss observed by
Saturator for the static client, and b) Fair-share between

the uplink and the downlink in WiFi

in the previous section, the Saturator captures cellular variability by

saturating the uplink and the downlink simultaneously. While this

approach works for cellular, we cannot adopt the same approach for

WiFi. This is due to the difference in how cellular and WiFi manage

access to the shared medium. In cellular different carrier frequency

bands are dedicated for the uplink and downlink transmission [5].

However, in WiFi, the transmitting nodes contend for access to

the shared medium. This means that if we saturate the uplink and

downlink simultaneously, we capture the delivery opportunities

on the upstream under the contention from the downstream trans-

mission, and vice-versa. This is problematic in the case where the

captured trace is used to evaluate the performance of applications

that mostly push traffic in a single direction.

Identifying the saturation point: To capture the delivery op-
portunities, it is important to saturate the available channel capacity.

The cellular emulator achieves this by employing a large window

of packets-in-flight. Saturator adjusts the window size to keep the

observed RTT between 750 milliseconds and 3 seconds. Using such

a large window size ensures that the Saturator has a persistent

queue of packets at the bottleneck link, which in return means that

it is effectively saturating the link. Further, by setting a threshold

on the window-size, the Saturator ensures that it will not overflow

the network queue and thus induce packet loss. Adopting such

a large threshold is possible in cellular because cellular employs

large queues to deal with rapidly changing network variability and

multi-second outages [10]. However, we cannot employ a similar

approach in WiFi for two main reasons: (1) WiFi employs a much

smaller queue than cellular, 2) the maximum bitrate available for

a WiFi client (i.e. PHY rate) is not fixed and is affected by channel

conditions and WiFi losses. The latter means that to effectively

capture the available bandwidth in WiFi we need to dynamically

adjust the window size to adapt to the changing PHY rates. Failure

to do so, may cause the record to overflow the network queue and

thereby induce packet losses, which could potentially cause the

WiFi network to further reduce the PHY rate. Figure 1a demon-

strates the effect of using a larger static threshold on the observed

packet loss rate in WiFi. These results were obtained by running

the Saturator on an end-device connected to another end-host via

WiFi in a controlled setup with ideal WiFi conditions (no competing

traffic, end-host in close proximity to the WiFi access-point). In

Figure 1a, we observe that while Saturator has already reached

saturation point (steady-state) under one second, the packet losses
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keep increasing and reach 30% of all packets sent within 90 sec-

onds. Note that due to the overhead of control packets Saturator’s

throughput is only 85% of the PHY rate.

CapturingWiFi losses: WiFi losses are more common in practice

than cellular, because WiFi employs a smaller packet buffer and a

fewer number of L2-retransmissions. To accurately reproduce WiFi

variability, it is important to capture and replay WiFi losses. Failure

to do so will make all recordedWiFi traces appear lossless. This will

impact the performance of applications replayed over these traces

as the effect of WiFi losses is absent. The importance of capturing

WiFi losses further highlights the need to avoid inducing packet

loss during the record as it raises the challenge of isolating losses

due to buffer overflow from WiFi losses.

Emulating WiFi-specific features: It is essential to account for

other WiFi-specific features like frame aggregation as the client

is capable of achieving a much higher link utilization by sending

frames in batches. This feature is at the heart of improvements

in recent WiFi standards like IEEE 802.11 n, ac, and ax. Frame ag-

gregation could be A-MSDU or A-MPDU with varying parameters

adopted by devices. Hence, we require a solution that does consider

these factors.

3 NEMFI : DESIGN AND IMPLEMENTATION
We begin by providing a brief overview of NemFi’s system de-

sign. NemFi extends the state-of-the-art trace-driven emulator for

cellular to support WiFi emulation. NemFi records WiFi packet de-

livery opportunities in a trace that can be later replayed to emulate

the recorded WiFi conditions. To achieve this, NemFi is designed
with two main components: a record module and a replay module.

NemFi’s record module records WiFi network variability by captur-

ing the time MTU-sized packets were able to effectively cross the

WiFi link, as well as the time packets were dropped due to WiFi

losses. These traces of packet deliveries and packet losses are then

passed to the replay module. NemFi’s replay module is built on

top of Mahimahi’s [6], a framework designed to record-and-replay

HTTP traffic. Similar to MahiMahi’s replay module, NemFi is built
as a Unix shell. When an application is running inside the shell,

all of its incoming and outgoing packets will be intercepted and

placed inside a queue. These packets will be first delayed for a

fixed amount of time to emulate one-way propagation delays, and

then the packet-delivery and packet-loss traces will be inspected to

determine the fate of each packet. Either the packet will be dropped

because it coincides with a packet loss event, or the packet will

be released. In the latter case, the packet will be released from the

queue to match the recorded packet-delivery trace.

CellSim and MahiMahi’s replayshell are identical in how they re-

play the packet-delivery trace, however, the key difference is that

MahiMahi is built using Unix shells, whereas CellSim requires to

run on a dedicated machine connected to both the client and the

server during replay. For this reason we opted to use MahiMahi’s

replayShell, since it’s easier to use in practice and requires less

hardware for the replay.

3.1 NemFi’s record
The goal of the record is to capture the variability of a WiFi link

over time. To achieve this, NemFi’s record module runs on two

machines: a sender and a receiver (as illustrated in Figure 2). The

sender is connected to the receiver via two links: theWiFi link being

measured and a reliable link for feedback. A separate reliable link

provides a quick feedback loop to allow our record tool to quickly

adapt its sending rate, and avoid over-filling the network queue. As

mentioned in Section 2.2, the key challenges of designing a record

mechanism for WiFi are: (1) How do we accurately capture the

delivery opportunities on the uplink and downlink simultaneously

given the effect of contention? (2) How do identify when we have

saturated the channel? Recall that identifying the saturation point is

key to prevent introducing packet losses, which may cause WiFi to

reduce the sending rate. In the remainder of this section, we explain

how we modify the Saturator to address these two concerns.

3.1.1 Capturing WiFi delivery opportunities: Given the limita-

tions of saturating the WiFi uplink and downlink simultaneously,

we modified the Saturator to run the saturation in a single direction

only. The intuition behind this decision is that by saturating in a

single direction, we omit the effect of contention and are able to

capture all the delivery opportunities available on the WiFi link

overtime. This trace provides us with all the information we need

to then emulate the WiFi link accurately for any type of applica-

tion or service (regardless of their transmission mode). The next

question is how to allocate the delivery opportunities between the

uplink and downlink during replay. To answer this question, we

conducted a set of experiments to understand how bandwidth is

distributed between uplink and downlink in WiFi. Figure 1b illus-

trate our results. We ran the Saturator while varying the window

size between 4000 to 8000 MTUs, and for each window size value,

we run the Saturator to saturate the channel in both directions

(denoted as Bi-di in Figure 1b) or a single direction (uplink only).

Our results show that in all cases there is a fair share of delivery op-

portunities between the uplink and the downlink streams. Further,

we observe that the throughput we achieve while saturating in a

single direction matches the sum of throughput in each direction.

This result indicates that by recording the delivery opportunities in

a single direction, we are able to then emulate any combinations of

uplink-downlink transmissions by employing fair resource sharing

during replay.

3.1.2 Identifying Saturation point: The next challenge that we
need to address is that of identifying the saturation point, which

is represented in WiFi by the PHY rate. The PHY rate indicates

the maximal bitrate available between the wireless client and the

access point. The issue is that this value is dynamic since WiFi

adapts the PHY rate based on the wireless network conditions.

Hence to address the problem of dynamic saturation point we

need to measure the PHY rate overtime and quickly adapt the

Saturator’s sending rate to match the PHY rate as it changes. We

measure the PHY rate by extracting station dump information from

the client WiFi driver using Linux utility iw every 25 ms. With

repeated experimentation, we found that this frequency strikes a

good balance between getting a good estimate of the maximum

bitrate overtime without inducing too much run-time overhead,

due to continuous routine calls to the driver, which could interfere

with the saturation.

To adapt the window size to match the PHY rate overtime, we

equipNemFiwith a rate control algorithm, presented in Algorithm 1.
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We start by setting the window size to 5. NemFi’s rate control al-
gorithm is then periodically invoked with the last PHY rate read-

ing and the current Saturator’s sending rate as input. The goal

of the rate-control algorithm is to decide whether to increase or

decrease the window size, and by how much, to match the latest

PHY rate value. To achieve this, we follow an approach similar to

proportional–integral–derivative controller that is widely used in

industrial control systems [4]. We set the last PHY rate value as

the “theoretical bound”. Next, we compute the difference between

the Saturator’s current throughput and the theoretical bound, and

denote this value as the ‘error’ i.e. how far we are from the theo-

retical bound. The error is then used to determine by how much

we need to increase the window size The window size is 𝑒𝑟𝑟𝑜𝑟 ∗ 𝛼 ,
where 𝛼 is a constant that controls how aggressively we approach

the PHY rate. We set 𝛼 as
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑

1500
. Our intuition behind

setting 𝛼 proportional to the current PHY rate is that the higher

the PHY rate, the larger the window size increments should be to

quickly converge to the saturation point. Further, our empirical

results have shown that by setting the denominator to 1500, we

strike a good balance between quickly converging to the PHY rate

while minimizing the risk of overshooting.

Algorithm 1 NemFi’s Rate Control algorithm

1: procedure SatControl(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑈𝑝𝑙𝑖𝑛𝑘𝑃𝐻𝑌,

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ) ⊲ Input feedback variables

2: 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑈𝑝𝑙𝑖𝑛𝑘𝑃𝐻𝑌

3: 𝑒𝑟𝑟𝑜𝑟 ← 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
4: 𝑑𝑖 𝑓 𝑓𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑡𝐺𝑎𝑖𝑛 ← 𝑙𝑎𝑠𝑡𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 −

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

5: 𝑠𝑎𝑡𝐹𝑙𝑎𝑔← 0

⊲ Check if we need window size adaptation

6: if 𝑠𝑎𝑡𝐹𝑙𝑎𝑔 ≠ 1 & 𝑑𝑖 𝑓 𝑓𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑡𝐺𝑎𝑖𝑛 ≠ 0 then
7: 𝑤𝑖𝑛𝑑𝑜𝑤 ← 𝑤𝑖𝑛𝑑𝑜𝑤 + 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑒𝑟𝑟𝑜𝑟
8: else
9: 𝑠𝑎𝑡𝐹𝑙𝑎𝑔← 1

10: end if
⊲ Decrease window on a drop in PHY rate

11: if 𝑙𝑎𝑠𝑡𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 > 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 then
12: 𝑤𝑖𝑛𝑑𝑜𝑤 ← 0.8 ∗𝑤𝑖𝑛𝑑𝑜𝑤
13: 𝑠𝑎𝑡𝐹𝑙𝑎𝑔← 0

14: else if 𝑙𝑎𝑠𝑡𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 < 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐵𝑜𝑢𝑛𝑑 then
15: 𝑠𝑎𝑡𝐹𝑙𝑎𝑔← 0

16: end if
17: end procedure

Next, we need to figure out if we reached the saturation point.

To achieve this, we define the differential throughput gain as the

difference between the Saturator’s current and last throughput

value. While the differential gain is positive, we keep increasing

the window. Once the differential gain becomes zero, it means we

reached the saturation point, and we set the saturation flag to true

to avoid increasing the window size any further.

The final task of the rate control algorithm is to adapt the window

size in the event of PHY rate change. When we observe a drop in

PHY rate due to deteriorating channel conditions, we decrease

the window size to 80% and turn the saturation flag to false. It

causes the algorithm to get to a new saturation state by re-adapting

the window size. An aggressive drop in the window size would

result in more transient time in reaching the next saturation state.

We observe by repeated experiments that with 80% drop, we are

reasonably quick in getting to the next saturation state even in

extremely mobile scenarios. Similarly, we assign the saturation flag

as false on noticing an improvement in PHY rate to increase the

window size further.

At the end of the record phase, we obtain a trace where each

entry comprises of: the timestamp and the sequence number of

successfully sent packets, the throughput and the percent loss rate

at that instant along with the PHY rate and the window size. For

the replay, we process the recorded-trace to give a new trace as

input. The replay-trace entries comprise of: the delivery opportu-

nity, the throughput, the sequence number, and the percent loss

rate. We covert the timestamps in recorded trace to a time-series in

milliseconds from 0 to the duration of the record, which serves as

packet delivery opportunities during the replay.

3.2 NemFi’s replay
The goal of NemFi’s replay tool is to retrace the same time-based

conditions recorded in the trace with packet deliveries and packet

losses. There are three main challenges that we need to address for

replaying WiFi: 1) Sharing opportunities between the uplink and

the downlink, 2) Replaying WiFi losses, and 3) Emulating frame

aggregation.

Firstly, we need to share delivery opportunities between the

uplink and the downlink flows as they communicate on a shared

spectrum in WiFi. This is not present in MahiMahi’s linkshell as it

is designed for cellular, where uplink and downlink traffic are allo-

cated to different time slices. Hence, we introduce a weighted round-

robin like approach to share the delivery opportunities between

the uplink and the downlink. Concretely, we define percentShare to
represent the uplink share of the medium; where 1 - percentShare2

represents the downlink share. At the time of the next delivery

opportunity, NemFi generates a random number between 0 and 1. If

the number is smaller than 1 - percentShare and the downlink queue
is not empty, the downlink queue seizes the delivery opportunity. If

the dowlink queue is empty, and the uplink queue is not, the uplink

queue seizes the delivery opportunity. The process repeats similarly

for all subsequent delivery opportunities. To emulate propagation

delays, we introduce a constant delay of half the round-trip time

on both the uplink and downlink packet queues.

The next challenge is to emulate WiFi losses. We use the instan-

taneous loss rate at the current index of the packet delivery trace

when a packet is being read from the socket into the corresponding

packet queue. If the loss rate turns out to be positive, we generate

a random number between 0 and 1. If this number is less than the

current loss rate, then we drop the packet read from the socket and

that packet is not appended to either of the packet queues.

Finally, to emulate frame aggregation, we adopt the model in-

troduced by da Hora et al. [2]. Concretely, we estimate the total

number of aggregated frames at different PHY rates that we observe

2
In our evaluation, we set this value to 0.5 (as per the results in Figure 1b) to achieve

fair share between the uplink and downlink
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Figure 2: Experimental setup for NemFi

in each entry of the packet-delivery trace. Using the model [2], we

estimate the frame aggregation per PHY rate for the specific AP

and stations used in the experimental setup(Section 4.1). This gives

us an inference of the number of packets to be grouped together

for sending it to the output queue. We additionally observe that

all packets which are part of the same aggregate have practically

the same delivery timestamps. We do not group the whole set of

delivery opportunities when we have missing sequence numbers,

due to the losses in the aggregated frame during the record phase.

On detecting the missing sequence number in the input trace, we

do not group more packets in the same emulation opportunity.

4 EVALUATION
In this section we first describe the experimental setup used to

evaluate NemFi, and then we detail the analysis of NemFi’s valida-
tion: first, in terms of recording with fidelity the WiFi link capacity

fluctuations and losses, then in terms of replaying a real application

on the recorded traces.

4.1 Experimental setup
To validate NemFi we deploy an in-lab testbed where we capture

and replay WiFi traces in a controlled environment (see Figure 2).

We have NemFi running on two machines, a client and a server.

The client machine is connected to a WiFi access point via a wire-

less card and an Ethernet cable. The wireless connection is used

to monitor the wireless link and capture traces, while the cable

connection is used to exchange control messages with the server,

connected via cable to the same access point. The client sends UDP

packets to the server via the wireless link (saturating the channel)

and receives acknowledgements from the server via Ethernet.

In our evaluation, the client and server are HP Elitebook 840 G2

running 5
𝑡ℎ

Generation Intel Core i7-5600U 2.6 GHz (max turbo

frequency 3.2-GHz) with 8 GB RAM and 512 GB SSD hard drive.

Both machines have Intel I218LM Gigabit network connection

(10/100/1000 NIC) cards. In addition, the client is equipped with an

Intel Wireless 7265 with iwlwifi driver and A-MPDU frame aggrega-

tion enabled. The access point is a TP-Link AC1750, Archer C7 V5

which supports IEEE 802.11ac/n/a on 5GHz and IEEE 802.11b/g/n

on 2.4GHz.

For the evaluation, we conduct our experiments using IEEE

802.11ac/n/a on a 5GHz channel with 20 MHz width, and we con-

sider threemain scenarios: (1) Ideal with stationary client and server
machines that are 2 meters apart. (2) Static and far scenario, where
the machines are stationary and the client is 12 meters from the

access point. (3) Mobile scenario, with the client machine moving

indoors to replicate home/office mobility patterns.

For the replay, we use the same setup described above, and evalu-

ate NemFi using 3 applications with different data-transfer patterns.

We use Iperf [8] to simulate applications with TCP-upload type of

traffic. SCP for TCP-download type of traffic (client machine down-

loading a large file from the server). Finally, DASH is representative

of a more complex data exchange pattern, where bursts of traffic is

downloaded followed by periods of zero-traffic, and the application

adapt its bitrate based on the network throughput. In this case, an

error in the record-replay may lead to a different behaviour of the

application, with different choices for the video bitrate to download.

For this scenario, the client machine downloads a one minute video

from the server machine encoded in several bitrates, from 248 Kbps

to 52 Mbps.

4.2 Validation of NemFi’s record
In this section we validate the trace record component of NemFi. In
particular, we verify that: (1) the instantaneous throughput reported

in the trace is consistent with the WiFi PHY rates, (2) NemFi does
not induce additional losses, and (3) NemFi fully utilises the link

capacity. For the latter, we use the model defined by da Hora [2]

to estimate the instantaneous wireless link capacity given the PHY

rate and report the ratio (in percentage) of the theoretical link

capacity and the throughput reported by NemFi.
We report the instantaneous recorded throughput and link uti-

lization in the most challenging case, the Mobile scenario, where
we expect rapid fluctuations in the supported PHY rates. Figure 3a

illustrates the time series of the captured throughput and the PHY

rate in one example experiment. We see that NemFi throughput
closely tracks the wireless PHY rate and quickly adapts to changes.

Figure 3b reports the ratio between the theoretical link capacity
and the throughput measured by NemFi. Theoretical link capacity

here refers to the maximum throughput that could be achieved at

a particular PHY rate by the client. We deduce this capacity using

the model of da Hora et al. [2]. We obtain the ratio by using mean

throughput and theoretical link capacities observed in 100 ms bins.

The figure shows that the average link utilization is always close to

100 percent for all the encountered physical rates. For some PHY

rates like 115 Mbit/s, a slightly lower link utilization is expected,

since they are recorded only for extremely short duration.

We study packet loss in the Ideal scenario where the wireless

loss rate is expected to be close to zero. The ideal setting allows

us to detect if NemFi introduces packet loss by over-estimating

the channel capacity; whereas in other scenarios, it is difficult to

distinguish betweenWiFi losses and NemFi induced losses. We infer

packet losses from the gaps in the sequence numbers of packets

received at the server. Figure 3c reports the packet loss seen across

all the experiments in the Ideal case. We conclude that NemFi does
not lead to an increase in packet loss, since the measured loss rate

remains at a negligible value of 0.2% on average, in contrast with

the results reported in Figure 1a when we ran the Saturator in the

same setting.

4.3 Validation of NemFi’s replay
In this section we validate NemFi’s replay phase, by showing that

the performance of a diverse set of applications inNemFi’s emulated

environment matches the performance of the same applications in

a real environment. To do so, we design the following experiment:

for each scenario and application, we run NemFi to record the WiFi

trace, and, when this phase is complete, we run the application in
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Figure 3: Evaluation of NemFi’s record.

the real environment (without using NemFi). We later replay the

same application on the recorded traces. In this case, we use the

same setup as in Figure 2, but the client machine uses NemFi over
the Ethernet cable instead of the WiFi to communicate with the

server machine. We repeat this process 15 times for each case and

compare the average performance of each application across runs

in the same setting, in the real case and with NemFi emulation.

The applications we chose are quite different, thus we use dif-

ferent metrics to evaluate the accuracy of NemFi in replaying the

WiFi conditions. For Iperf we consider the average throughput

measured by the server per experiment, while for SCP we measure

the total file transfer time in each run. For DASH, we consider the

time-weighted average of bitrates of video chunks during a one-

minute video to capture the video streaming performance of an

experimental run.

Figure 4 presents the performance of each application, in the

different scenarios, for the real and emulated environment. In Fig-

ure 4a, we see that the average throughput achieved by Iperf in the

Ideal condition for real-world experiments over WiFi and NemFi’s
replay is within 2%. Even in Static and far and Mobile scenarios,
we replay Iperf throughput with an accuracy of 93%. For SCP (Fig-

ure 4b), we observe that the file transfer time with emulation differs

by at most 2% from the real-environment experiments under the

same conditions.

Finally, in Figure 4c we observe that the difference in the time-

weighted bit-rates for WiFi and NemFi’s replay in Ideal and Static
and far scenarios is less than 3%. In theMobile scenario, where WiFi

link capacity fluctuates more because of client mobility,NemFi’s em-

ulated environment leads to a difference in the DASH performance

close to 2%.

5 CONCLUSION & FUTURE REMARKS
In this paper, we introduced NemFi a novel trace-driven emulator

for WiFi. We identified a number of challenges that need to be

addressed to develop an accurate record-and-replay tool for WiFi,

and we demonstrate how NemFi addressed these challenges. Our
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Figure 4: NemFi vs real-world WiFi experiments for (a)
Iperf, (b) SCP, and (c) DASH with varying client conditions

evaluations show that NemFi accurately captures WiFi conditions

by capturing the variability in delivery opportunities and WiFi

losses. We hope that by releasing NemFi others will be able to build
on our work both by improving and further evaluating NemFi as
well as by using it to evaluate networked systems over emulated

WiFi. In particular, our evaluation focused on indoor scenarios with

limited mobility, hence further evaluation is required for using

NemFi in other scenarios.
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