
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2020

Trace-Driven WiFi Emulation
Accurate Record-and-Replay for WiFi

ABHISHEK KUMAR MISHRA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE





Accurate record-and-replay for WiFi

Trace-Driven WiFi Emulation

Author:
Abhishek Kumar
MISHRA

Email:
akmishra@kth.se

Degree Project Report
KTH supervisor: Viktoria Fodor

Host company supervisor: Renata Teixeira
Examiner: Gunnar Karlsson

School of Electrical Engineering and Computer Science
Host Organisation: Inria, Paris

July 13, 2020



1



Abstract

Researchers and application designers need repeatable methods to evaluate
applications/systems over WiFi. It is hard to reproduce evaluations over
WiFi because of rapidly changing wireless quality over time. In this degree
project, we present NemFi, a trace-driven emulator for accurately recording
the WiFi traffic and later using it to emulate WiFi links in a repeatable fash-
ion. First, we present the advantages of trace-driven emulation over simula-
tion and experimentation. We capture the fluctuating WiFi link conditions
in terms of capacity and losses over time and replay captured behavior for
any application running in the emulator. Current record-and-replay tech-
niques for web traffic and cellular networks do not work for WiFi because
of their inability to distinguish between WiFi losses and losses due to self-
induced congestion. They are also lacking other WiFi specific features. In
the absence of a trace-driven emulator for WiFi, NemFi is also equipped to
avoid self-induced packet losses. It is thus capable of isolating WiFi related
losses which are then replayed by the NemFi’s replay. NemFi’s record also
addresses the frame aggregation and the effect it has on the actual data
transmission capability over the wireless link. NemFi can record frame ag-
gregation, at all instants of the record phase and later accurately replays the
aggregation.

Experimental results demonstrate that NemFi is not only accurate in
recording the variable-rate WiFi link but also in capturing cross-traffic. NemFi
also replays the recorded conditions with considerable accuracy.

Keywords

WiFi, trace-driven emulation, record & replay tools, networked system eval-
uation
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Sammanfattning

Forskare och applikationsdesigners behöver repeterbara metoder för att utvärdera
applikationer och system via WiFi. Det är sv̊art att reproducera utvärderingar
genom WiFi eftersom den tr̊adlösa kvalitén snabbt förändras över tid. I den-
na rapport presenterar vi NemFi, en sp̊arstyrd emulator för att noggrant
registrera WiFi-trafiken och senare använda den för att emulera WiFi-länkar
p̊aett repeterbart sätt. Först presenterar vi fördelarna med sp̊arstyrd emule-
ring jämfört med simulering och experiment. Vi f̊angar de varierande WiFi
förh̊allanden med avseende p̊akapacitet och förluster över tid och spelar upp
f̊angat beteende för alla applikationer som körs i emulatorn. Nuvarande in-
spelning och uppspelningstekniker för webbtrafik och mobilnät fungerar inte
för WiFi p̊agrund av deras oförmåga att skilja mellan WiFi-förluster och
förluster p̊agrund av självinducerad överbelastning. De saknar ocks̊aandra
WiFi-specifika funktioner. I avsaknad av en sp̊ardriven emulator för WiFi är
NemFi ocks̊autrustade för att undvika självinducerade paketförluster. Den
kan allts̊aisolera WiFi-relaterade förluster som sedan spelas upp igen av Nem-
Fi: s uppspelning. NemFi adresserar ocks̊aramaggregering och det är effekten
p̊afaktiska dataöverföringsförmåga via den tr̊adlösa länken. NemFi kan spela
in ramsamling, vid alla ögonblick i inspelningsfasen och ersätter senare nog-
grant aggregeringen.

Experimentella resultat visar att NemFi inte bara är användbart när det
gäller att registrera WiFi-länken med variabel hastighet, utan ocks̊aför att
f̊anga tvärg̊aende trafik. NemFi ersätter ocks̊ade inspelade förh̊allandena med
betydande noggrannhet.

Nyckelord

WiFi, sp̊arstyrd emulering, inspelnings- och återuppspelningsverktyg, nätverkssys-
temutvärdering
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Chapter 1

1 Introduction

Mobile networks are becoming increasingly more popular due to the widespread
use of mobile devices (e.g. smartphones, laptops, tablets, smartwatches,
etc.) [15]. The quality of wireless connectivity varies drastically from place
to place. There are several factors that affect the signal quality or create
interference like poor network configuration, old equipment, fluctuating de-
mands of users, interference from non-WiFi devices such as microwave, router
position, congestion, and coverage. These factors cause the wireless quality
to vary significantly over time. As many of today’s applications and services
will be running over wireless networks, it is very crucial to evaluate the per-
formance of these applications in different wireless networks. The variability
of WiFi makes it hard to predict how an application/service will work with
just a few experiments. Testing in one/few settings tells little of how a ser-
vice will behave when deployed at a large scale over a long period.

There are different options for evaluating networked applications and ser-
vices: simulation, testbed experiments, and emulation (Chapter 2). Simula-
tion is the easiest way to experiment with different wireless network condi-
tions. Simulators are used to mimic the behavior of a certain network in a
software-based environment. The advantages of the simulation are repeata-
bility, control, configurability, and experiments of large scale networks. The
main limitation of simulation tools, however, is that they require the user to
tune different parameters e.g., level of interference, congestion, loss rate, etc.
which may not reflect real wireless network conditions. Even with good pa-
rameter settings, a simulator cannot capture the complex inter-dependencies
of real systems.

At the other end of the spectrum, there is testbed experimentation, where
developers evaluate their applications over deployed wireless links either over
testbeds or by relying on volunteer testers. The results of such experiments
capture the impact of real wireless network conditions. The major disadvan-
tage of experimentation is that it offers no repeat-ability and is difficult to
scale. The variability of wireless networks makes it hard to reproduce the
results. The results of experimentation are, therefore, hard to interpret and
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one cannot distinguish the issues with application versus wireless issues.

Finally, trace-driven emulation involves recording traces in deployed wire-
less networks and later emulating the recorded behavior. The clear benefits
of trace-driven emulations are its ability to capture real network conditions
and the repeat-ability of the experiments. One can run the same network
conditions several times, which eases application or system debugging, and
enables comparative analysis of different applications or protocols over the
same network conditions. While there exist trace-driven emulators for cellu-
lar and HTTP traffic, to the best of our knowledge, there exist no such tools
for WiFi.

Most of the existing solutions follow record-and-replay method where we
capture packet-delivery opportunities in the trace file and then pass those
opportunities to the replay, which allocates the recorded delivery opportuni-
ties when the tested application has packets to send. Delivery opportunities
are instances where an MTU sized packet could be released by the replay
framework.

The goal of this degree project is to develop emulation methods
and systems for WiFi. We first identify many limitations with the
existing method designed for cellular links, which together prevent
us from applying it directly for WiFi. Then, we design and imple-
ment a new set of methods and algorithms to adapt the record and
replay method for WiFi.

The rest of this section highlights the challenges of trace-driven emulation
over WiFi and then presents the contributions of this degree project.

1.1 Trace-driven emulation over WiFi

The state-of-the-art trace-driven emulator works only for cellular networks.
This is because, in cellular networks, there are per device queues. If the
bottleneck is the cellular network, then the congestion at the base-station
is mostly self-induced and the effect of cross-traffic is muted. Moreover, in
cellular networks, the up-link and down-link communications of users take
place on different time slices and the two do not interfere with each other.
Whereas the medium is shared in WiFi and hence, delivery opportunities
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are shared between the upstream and the downstream flows as well as with
competing traffic.

LTE base-stations hold much larger queues than WiFi and allow for more
re-transmissions. In WiFi, the queues are smaller and packet loss is more
common. This introduces the question of how to saturate the wireless link
without inducing too many packet losses which may have a negative impact
on the measurements. In WiFi, even in the case of static users, there could
be a lot of fluctuation in the supported PHY rates due to variation in channel
conditions.

1.2 Major contributions

We design, evaluate, and implement, NemFi, a trace-driven WiFi emulator
based on the record and replay method. We highlight major contributions
below:

• Identifying the limitations of the existing method for WiFi and devel-
oping a new rate control algorithm to record traces with delivery op-
portunities over WiFi. This algorithm accurately captures variations
of WiFi physical rate as well as WiFi losses. NemFi’s record module
also logs information of frame aggregation.

• Designing the sharing of up-link and down-link queues for the distribu-
tion of packet delivery opportunities during the NemFi’s replay. Also,
introducing the frame aggregation in the replay phase and playing back
WiFi losses.

1.3 Thesis outline

The thesis is organized as follows in upcoming sections:

• Chapter 2 presents existing work done in different methods of evaluat-
ing network conditions, protocols, and mobile applications.

• Chapter 3 discusses overall system design and challenges in using ex-
isting methods.

12



• Chapter 4 elaborates on the design and implementation of the NemFi’s
record.

• Chapter 5 evaluates the record phase compared to existing tools and
justifies the answers to the research questions posed earlier.

• Chapter 6 comes up with the design and implementation of the NemFi’s
replay.

• Chapter 7 validates the whole record and replay pipeline, after the
success-full implementation of the replay phase introduced in the pre-
vious chapter.

• Chapter 8 concludes the work with remarks and suggestions for future
work.
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Chapter 2

2 Background and Related Work

This chapter aims to introduce basic concepts for the understanding of the
solutions discussed in this degree project. Also, we dive into the developments
that have already been made regarding the problem addressed by this work.

2.1 Basics of WiFi

WiFi is a widely adopted wireless communication protocol, used in most
home and office networks to allow laptops, printers, and smartphones to talk
to each other and access the Internet without connecting wires. [24]

WiFi standards are part of the IEEE 802 set of Local Area Network
protocols, and specify the set of medium access control and physical layer
protocols for implementing wireless local area network communication in var-
ious frequencies, including but not limited to 2.4 GHz, 5 GHz, 6 GHz, and 60
GHz frequency bands. The 802.11 family consists of a series of half-duplex
over-the-air modulation techniques that use the same basic protocol. WiFi
employs carrier-sense multiple access with collision avoidance whereby equip-
ment listens to a channel for other users (including non 802.11 users) before
transmitting each packet. [24]

2.1.1 Frame aggregation

Nowadays, WiFi standards focus more and more on improving metrics like
per-user throughput and latency. Frame aggregation is a key feature of the
latest WiFi standards that increases the throughput by sending two or more
data frames in a single transmission. In general, every frame transmitted
by an 802.11 device has a significant amount of overhead, including radio
level headers, medium access control frame fields, inter-frame spacing, and
acknowledgment of transmitted frames. [26]

WiFi standard defines two major types of frame aggregation: MSDU ag-
gregation and MPDU aggregation. The major difference between an MSDU
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and an MPDU is that the former corresponds to the information that is im-
ported to or exported from the upper part of the MAC sublayer from or to
the higher layers, respectively, whereas the latter relates to the information
that is exchanged from or to the PHY by the lower part of the MAC. [27]
Multiple MPDUs are acknowledged with a single block ACK in response to
a block acknowledgment request (BAR). This block ACK facilitates the ex-
change sequences to be aggregated.

A-MSDU: The principle of the A-MSDU (or MSDU aggregation) is
to allow multiple MSDUs to be sent to the same receiver, put together in a
single MPDU. When there are many small MSDUs, such as TCP acknowl-
edgments, the efficiency of the MAC layer is improved. Upper MAC receives
and buffers multiple packets (MSDUs) to form the A-MPDU. The A-MSDU
is ready to be transmitted either when the size of the waiting packets reaches
the maximal A-MSDU threshold or the maximal delay of the oldest packet
reaches a pre-assigned value. A-MSDU is not beneficial to use in the case
of poor quality channel conditions. As all MSDUs are joined into a single
MPDU with a single sequence number, for any corrupted sub-frames, we
must re-transmit the entire A-MSDU. [27]

A-MPDU: The concept of A-MPDU aggregation is to merge multiple
MPDU sub-frames within a single leading PHY header. A-MPDU is different
from A-MSDU aggregation as it functions after the MAC header encapsu-
lation process. All the MPDUs within an A-MPDU must be addressed to
the same receiver address. Moreover, there is no waiting time to form an
A-MPDU. Therefore, the number of MPDUs to be aggregated completely
depends on the number of packets already in the transmission queue. The
maximum length of an A-MPDU is 65,535 bytes. [27]

As all of the management information needs to be sent only once per
frame, the ratio of payload data to the total volume of data is higher, allow-
ing higher throughput to be achieved.[26]

Frame aggregation, therefore, improves the link utilization by a signifi-
cant margin. Link utilization refers to the average traffic that we can send
on a link in the network compared to the PHY rate.

There has been a lot of work on measuring WiFi and estimating the
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capacity of it. Hora [5] formulates methods for estimating the link capacity
of commodity access points.

2.2 Existing simulation frameworks

Researchers rely on network simulators both for academia and industry to
evaluate new protocols. NS-2 [7] and NS-3 [8] are open-source network sim-
ulators to reproduce network systems. NS-2 provides support for simulation
of TCP, routing, and multicast protocols over wired and wireless (local and
satellite) networks [25]. While NS-3 simulation core allows research on both
IP and non-IP based networks. With NS-3 users can easily perform simula-
tion for wireless simulations that involve models for WiFi, WiMAX, or LTE
for layers 1 and 2 and a variety of static or dynamic routing protocols such
as OLSR and AODV for IP-based applications.

OMNET++ [9] is a simulation over wired and wireless communication
networks, on-chip networks, and queuing networks. OPNET [10] is an open-
source network simulation tool that offers various topologies and configura-
tions. It could be used for cross-layer design, defining new technologies like
ultra-wideband, software radio, and more localized algorithms. NETSIM [11]
is a commercial network simulator that provides simulation for layer 1 and
layer 2 capabilities of WLAN.

QualNet [16] is a commercial network simulator for scalable network tech-
nologies. It offers a GUI for users to complete the simulation without the
need for coding. TraceReplay is an application layer simulator built in NS-3
for network traces [11].

Even though there are a lot of simulators available, simulation models fail
to capture the diversity of deployed systems. Simulation models also require
input parameters that are hard to set.

2.3 Existing testbeds

Testbeds refer to platforms that provide support for testing and development
of new technologies, products, or scientific theories.
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Wireless Hybrid Network (WHYNET) [23] is a hybrid testbed as it en-
ables the use of simulation, emulation, and real hardware. It allows us to
integrate all three components on both individual and combined levels. There
is limited remote access to WHYNET testbed infrastructure. MONROE [19]
is an open access hardware-based measurement platform for doing experi-
ments on mobile broadband. It lacks the support for WiFi.

ORBIT [22] is an example radio grid testbed that provides the function-
ality of reproducing wireless experiments with a large number of nodes. It
helps users to introduce fading and controlled interference. The advantages
of testbeds include running experiments over real wireless links.

However, the testbeds come with major drawbacks like no repeat-ability,
small-scale in nature and are location dependent.

2.4 Existing emulation solutions

In network emulation, we bring a device to a test network in a lab environ-
ment that alters the packet flow in such a way as to mimic the behavior of a
network such as a LAN or WAN. This device may be either a general-purpose
computer running software to perform the network emulation or a dedicated
emulation device. This technique is used for testing the performance of real
applications over a virtual network.

Emulation is different from network simulation where purely mathemat-
ical models of traffic, network models, channels, and protocols are applied.
The aim is to assess performance, predict the impact of change, or optimize
technological decision-making. [25] Network emulators take care of many
network attributes such as latency, available bandwidth, packet loss, and
jitter. [25]

Trace-driven emulators follow the record-and-replay paradigm, which refers
to the act of recording the delivery opportunities, generally in the form of a
trace file, and using the trace later to emulate the captured network condi-
tions. Figure 1 illustrates the paradigm.
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Record Replay

Experimental Setup
Design

Collection of Trace

Validation of collected
trace and Metadata

Trace Processing

Distribution of
delivery opportunities

Incorporating network
specific

characteristics

Figure 1: Record-and-Replay paradigm

The record starts with designing an experimental setup that is capable of
capturing the network effectively and accurately. It follows with actual trace
collection, where we generally send packets to record the state of the network.
Collected traces could then be validated for the correctness in recording net-
work parameters.

Replay processes the trace and metadata collected from the record and
extracts the packet delivery opportunities. It needs to be distributed for
both up-link and down-link flows. Finally, replay also incorporates in it-
self, network-specific characteristics like variable link rates and losses, frame
aggregation, etc.

2.4.1 Trace-driven emulators for cellular

Several network emulators have been previously used to emulate network
conditions for traffic over cellular. Mobile network tracing [20] observes traf-
fic passively to generate traces and then uses the Packet Modulator (PaM)
to corrupt, delay, or drop captured packets. However mobile network tracing
does not address the question of different machines sharing the same band-
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width. Trace-modulation [21] listens to a path passively multiple times to
generate traces of real network behavior.

Sprout [1] introduces Saturator, a tool to collect traces over cellular links.
Collected traces could later be used to emulate traffic using their simulator,
CellSim. Figure 2 presents the architecture of the Saturator.

Rate Control Feedback

Feeback
Link

Link Under Test

ServerSaturator

Feedback

Figure 2: Architecture of Saturator [1]

We see in the Figure 2 that Saturator is connected to the server by two
links. The first one is the link under test which is the wireless link. It could
be cellular or WiFi. Saturator sends UDP packets with a very basic rate
control to the server. It increases the number of packets in flight by one, af-
ter every successful reception of the ACK packet from the server. Saturator
has a Maximum Window Size beyond which it stops increasing its sending
rate. The saturator assumes that the maximum window size is reached when
an RTT of 3 seconds is reached, or when the window size hits 1500 MTUs.
There is a feedback link that reliably sends back the ACK packet to the client
machine running the Saturator.

Saturator does not prove to be accurate for recording WiFi due to the
major problem of induced losses. Section 3 and 4 describes this in detail.
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2.4.2 Trace-driven emulators for web traffic

Mahimahi [2] is a framework for recording and replaying HTTP traffic under
different network conditions. It includes three network emulation tools: De-
layShell, LinkShell, and LossShell. Mahimahi uses DelayShell for emulating
a fixed propagation delay and LinkShell for emulating fixed and variable ca-
pacity links. MpShell [14] extends the Mahimahi framework to record WiFi
and LTE traces simultaneously. This work was mainly developed to evaluate
the performance of MP-TCP in different network conditions and for various
types of applications.

Figure 3 describes the architecture of LinkShell. It contains separate up-
link and down-link queues for storing the packets from the up-link and the
down-link application traffic. Queues release packets based on the trace given
as an input. LinkShell uses separate private network traces to isolate traffic
between multiple instances of LinkShell spawned in the client machine.

Uplink Queue

Downlink Queue

InternetApplication

Private Network Namespace

Figure 3: Architecture of LinkShell [2]

Both MpShell and LinkShell have major drawbacks in design as they do
not share opportunities between the up-link and the down-link and also they
have no support for replaying frame aggregation and WiFi only losses.

In this degree project, we opt for trace-driven emulation. A trace-driven
emulation is a good option because 1) testing takes place on the real network
and 2) traces help in repeat-ability, the results and testing environment can
be reproduced later. Therefore trace-driven emulation is preferred over sim-
ulation, testbeds, and experimentation.

20



Chapter 3

3 System Design

In this chapter, we justify the design decisions of NemFi. NemFi is a trace-
driven emulator for WiFi, which consists of two phases: the record and
the replay phase. In essence, NemFi extends the Saturator which is the
existing state-of-the-art trace-driven emulator for cellular. However given the
distinctions between cellular and WiFi, NemFi adapts the saturator in several
ways to make it suitable to record and replay WiFi network conditions. In the
sequel, we explain why the Saturator in its current state fails to accurately
capture WiFi network conditions, and how NemFi is designed to address
these limitations.

3.1 Consideration & existing problems

In efforts of creating a trace-driven emulator for WiFi, a major challenge is
the collection of traces which would help in getting a picture of the constantly
changing channel capacities. This is because traces contain packet delivery
opportunities in the form of timestamps for the client machine. Therefore
traces must display the link capacity of the wireless connection to capture
the network behavior.

In Figure 4, we see the problem just discussed. Here a client connected
to an access point is static and is trying to send traffic in order to estimate
channel capacity. To avoid induced losses, the sender ends up sending less
than the supported rate and misjudges the packet delivery opportunities.
Saturating the wireless link is important concerning NemFi or for that mat-
ter any record and replay tool as we would like to replay just the WiFi losses
in the replay phase. Thus avoiding the induced losses due to buffer overflows
at the client machine during the period of the trace collection is essential.
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Figure 4: Underflow from ideal saturation rate for a static WiFi client
(Throughput in Mbps vs Time in seconds)

There are other challenges in saturating the WiFi links namely frame ag-
gregation and cross-traffic from other applications during the record phase.
Due to frame aggregation, the client is capable of achieving a much higher
link utilization by aggregating the acknowledgements for a group of received
frames. This feature is at the heart of improvements in recent WiFi standards
like IEEE 802.11 n, ac, and ax. Therefore the record and replay framework
proposed must investigate and consider frame aggregation. Moreover, frame
aggregation could be A-MSDU or A-MPDU with varying implementation
parameters. Thus, a universal solution is required. Another factor affecting
the recorded traces is cross-traffic generated by other applications during the
process of getting the traces. This could affect the packet delivery opportu-
nities to some extent.

In this degree project, we introduce NemFi to emulate different WiFi
scenarios from recorded traces. It follows record and replay methodology.
During the record phase, we are focusing on capturing the varying channel
capacity of WiFi, and replay emulates the recorded conditions taking into
account the losses as well as cross-traffic. We evaluate the NemFi’s record
with the Saturator, which was originally designed for cellular networks. Sat-
urator for the comparison experiments sends on a very high sending rate
to saturate the channel. This acts as a benchmark of achieved saturated
throughput because we would be sending a lot more than WiFi link capacity
allowing induced packet losses due to local buffer overflows.
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Looking into the architecture, the system consists of two components.
The overall emulator has a record component and a replay shell. While the
NemFi’s record captures the packet delivery opportunities over WiFi, record
shell creates a new network namespace for itself before launching the shell;
which is logically another copy of the network stack, with its routing tables,
network devices and rules for the firewall.

While NemFi’s record is built on top of state-of-the-art trace-driven em-
ulator Saturator [1] which was made for LTE, replay shell is built on top of
Mahimahi’s [2] link emulator LinkSell, originally made for replaying recorded
HTTP traffic. Mahimahi was chosen amongst other emulation frameworks
introduced in Section 2.1.3, because of two main features possessed by it.
First of all, it is very light and performance efficient. Then, it supports
a very high degree of isolation. By using different network namespaces of
Linux, creates the environment which allows multiple instances of MahiMahi
shells to communicate using isolated individual traffics.

Design considerations and introduced features of the NemFi’s record
framework with respect to the reference, Saturator, are illustrated in the
Figure 5
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Saturator NemFi's Record

1. More elaborated trace collection
optimised for WiFi

2. Adaptive rate control for the
client sending application

3. Robust to sudden variation of
supported PHY rates due to
fading and mobility

4. Supports separate client and
server applications for one way
tests

5. Records frame aggregation
related parameters

6. Captures just WiFi related
losses

1. Trace collection support at the
client and the server

2. Sender application with 
constant number of packets in
flight

Text

1.

2.

1.

2.

3.

4.

5.

6.

Figure 5: Design consideration of NemFi’s record with respect to Saturator

Similarly, major considerations in the design of the NemFi’s replay frame-
work compared to the reference, MahiMahi’s are shown in the Figure 6
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MahiMahi NemFi's Replay

1. Takes time-series trace as
input

2. Emulates variable rate cellular
links using user provided trace

1. Support for more elaborated
packet delivery trace as
input

2. Sharing of the uplink and
the downlink packet queues
for distributing delivery
opportunities in WIFi

3. Percent channel sharing
between the uplink and the
downlink

4. Introduces the uplink frame
aggregation

5. Introduces the downlink
frame aggregation

6. Replays varying WiFi
related losses

1.

2.

1.

2.

3.

4.

5.

6.

Figure 6: Design consideration of NemFi’s replay with respect to
MahiMahi(LinkShell)

The next sections describe respectively four major milestones in develop-
ing NemFi:

• Design and Implementation of NemFi’s record
This section describes designing an accurate packet delivery trace along
with other necessary parameters that are necessary to estimate the
wireless link condition at each instant in the record interval. After
the design implementation is done which takes care of capturing every
parameter proposed to be the part of the record trace.

• Performance Evaluation of NemFi’s record
This section does the preliminary evaluation of recorded traces in order
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to be sure that all the research questions initially looked into could be
tackled during the replay phase using the trace.

• Design and Implementation of NemFi’s replay
This section primarily focuses on designing methods for the usability
of collected packet delivery traces and other information recorded to
emulate all the WiFi features. Further, replay shell is implemented
which creates a virtual platform for the user to send and receive traffic
following the same behavior as WiFi itself.

• Performance Evaluation of NemFi’s replay
Here, after the implementation of the whole pipeline, we evaluate the
overall emulator by various methods as well as to measure and justify
the accuracy of the solution.
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Chapter 4

4 NemFi’s record: Design and Implementa-

tion

As discussed previously in section 2.3, the first step in the record-and-replay
paradigm is the record phase. This phase concerns with designing a frame-
work to record the WiFi network’s characteristics in the form of a trace.
The idea is to feed this collected trace to the developed emulator in order to
replicate the same behavior as that found during the record phase.

4.1 Overview of the NemFi’s record

NemFi’s record consists of a client and a server connected over two links,
the WiFi channel that we want to record and a reliable Ethernet link for the
feedback. The client sends MTU sized packets over the WiFi link trying to
saturate it at all PHY rates while the server replies with acknowledgements
over the reliable link.

NemFi’s record has two sender programs running at the client and the
server respectively. Separate programs are needed to enable them to measure
the up-link traffic, the down-link traffic, or both. The sending rate is primar-
ily controlled by the window size, which represents a window of N packets
in flight at an instant, which is maintained by each of the sender programs.
Using the feedback packets, each sender adjusts the window size to ensure
that the link is saturated without causing any self-induced packet loss. Both
the client and the server store in their log the time each data or ACK packet
is received, as well as its sequence number, and estimated RTT or 1-way
delay. Using these logs, the up-link, and the down-link latency, throughput,
and packet loss can be computed. The feedback consists of ACK packets sent
to the sender for the packets received by the receiver. The sender can then
keep sending consistently to saturate the link reliably. Therefore a separate
interface is needed for feedback to ensure timely delivery of ACK packets to
the sender, and to avoid any impact of feedback delay on the link saturation.
If the interface that has to be saturated is also used for feedback, queuing
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might cause enough delay for ACK packets to arrive on time, which causes
a possibility that the link might not get properly saturated.

4.2 Need for elaborated packet delivery trace

Just the time-series of packet delivery opportunities in the trace is not enough
for emulating WiFi. WiFi replay requires information like PHY rates infor-
mation, losses, and transport-layer sequence numbers. Sequence numbers are
useful in grouping delivery opportunities which do not contain lost packets
between them. Up-link and down-link PHY rate at each instant of successful
packet delivery is extracted from the client machine using the Linux iw com-
mand and appended to the output trace during the record phase. Optionally,
more WiFi related parameters like current bandwidth and guard interval size
are also recorded as metadata which could later be needed in improving the
NemFi’s replay.

NemFi’s record thus stores the following elements in the recorded trace:

• Timestamp - Timestamps of successful packet delivery in the trace act
as delivery opportunities for MTU packet delivery in the replay phase.

• PHY rate - PHY rate in WiFi represents the maximum bit rate that the
wireless link could achieve. We use the PHY rate observed at different
instances of the record phase as an indication to decide the number of
packets to aggregate if the frame aggregation is present.

• Sequence Number - Sequence numbers of delivered packets in the trace
helps NemFi’s replay in tracking WiFi losses.

• Instantaneous loss rate - We use the observed instantaneous loss rate
in the replay to emulate WiFi related losses. We calculate the instanta-
neous loss rate during the record from missing sequence numbers during
the previous second.
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4.3 Channel sharing between up-link and down-link

Up-link and down-link traffic for a given client compete for the WiFi channel.
One of the major challenges for the design of replay was to verify if the up-
link recorded trace is enough to characterize the WiFi channel. We observe
that in case of bi-directional traffic with enough flows to saturate the wireless
link, the channel is fairly/equally shared by the up-link and the down-link. In
order to test this, we carry the following experiments with frame aggregation
enabled and as well as disabled.

4.3.1 Up-link traffic only

Firstly, the AP was set to the bandwidth of 20 MHz, with IEEE 802.11n run-
ning on it. Despite being set to 20 MHz, channel bonding in 5 GHz which
made it currently to work in 40 MHz(Channel 36) with MCS 15 during ag-
gregation. MCS 15 has PHY rate of 300 Mbps. Running NemFi’s record
on just up-link only, showed that the client converges to the throughput of
251.5361 Mbps which was as expected.

Next, after disabling the frame aggregation in both up-link and down-link
directions, client traffic switched to IEEE 802.11a which gives a max PHY
rate of 54 Mbps. Running NemFi’s record on just up-link only, resulted in
client converging to the throughput of 43.334 Mbps which was as expected.

4.3.2 Bi-directional traffic

We first keep client and server machines with enabled frame aggregation.
Running NemFi’s record on both client and the server, resulted in both the
client and the server converging to the throughput of 101.5 Mbps.

Again, we disabled the support for frame aggregation at the client ma-
chine. While executing NemFi’s record on just up-link only, resulted in client
converging to the throughput of 17 Mbps which was as expected.

Thus, we observe from the above experiments, that indeed there is a fair
share of resource in the form of transmission opportunity in the wireless chan-
nel between the client and the server flows. This result allows us to record
only in one direction i.e the up-link. Although, ideally channel is shared in
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half by up-link and down-link flows; NemFi’s replay gives users the flexibility
to provide this as an input parameter when launching the replay shell.

4.4 Link capacity

NemFi’s record is based on the principle of recording actual packet deliv-
ery opportunities, along with other necessary information for capturing the
behavior of WiFi. In order to capture the packet delivery opportunities in
a WiFi network, knowing the wireless link capacities is essential. At every
instant of the record phase, we must send at a rate such that we hit the max-
imum achievable throughput. This will make sure that our collected traces
have truly pictured the wireless channel between the client machine and the
access point.

The first thing to investigate for the development of the record component
for NemFi is, therefore, how to track WiFi link capacities. WiFi link capacity
varies because of the rate adaptation being done by different nodes connected
to the access point to avoid high losses. This continuous rate adaptation is
done by the collaboration of the transmitter and receiver to deploy the best
MCS for the given channel conditions. These different possible MCS values
produce different supported up-link and down-link rates.

These MCS values not only contain the PHY rates but also the number of
spatial streams and modulation information [3]. Rate Adaptation algorithm
also controls, whether to transmit in legacy mode (802.11a or 802.11g) or in
a non-legacy mode (802.11 n, ac or ax) in a SISO or MIMO, whether a Short
Guard Interval (SGI) or a Long Guard Interval (LGI) is used and when to
enable the frame aggregation. [4] Therefore, in NemFi’s record the periodic
updates of the MCS-based Up-link and Down-link supported PHY rates are
used as the limit to aim for when collecting the saturated traces.

4.5 Frame aggregation

Next, in current WiFi standards, it is necessary to look into the effects of
frame aggregation on the recording client and target server’s sending capabil-
ities in case of bi-directional traffic data generation. In order to understand
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the effect of frame aggregation on rates achieved by the NemFi’s record and
the consequences of aggregation on the saturation channel capacities of WiFi,
it is essential to find the answers to few research questions. One important
question to investigate was whether perfect fairness is achieved between a
single client and access point pair when both are competing for the chan-
nel access with enabled and disabled frame aggregation. The results showed
that indeed with sufficient client and server sending rates, we achieve perfect
fairness irrespective of the presence of different frame aggregation methods
and their supported parameters (More on this discussed in section 6.2). This
proves that we could divide the packet delivery opportunities into half while
collecting the traces with only the client sending the data traffic for link
saturation. This will be taken advantage of by NemFi’s replay in the next
section. Now, let us look into the overview of NemFi’s record before describ-
ing the working and underlining algorithms in detail.

4.6 Method

4.6.1 Feedback routine

Routine 1 is present on the sender program at the client-side, which is called
every time the sender receives an ACK packet from the server through the
feedback interface. Apart from getting the updated feedback variables [Al-
gorithm 1: line 2 and 3], the routine also keeps track of the last throughput
observed on the link (lastThroughput) as well as the last PHY rate supported
(lastTheoreticalBound) on the link [Algorithm 1: line 5 and 6]. Feedback
variables are currentRate and currentBitrateUplink, which represent current
throughput achieved and current up-link PHY rate supported at the link.
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Algorithm 1 NemFi’s Feedback Routine

1: procedure AckRoutine(recvAck) . On receiving Ack from Server

. Update feedback variables
2: currentRate← calRate()
3: currentBitrateUplink ← calBitrateUplink()

. Call the control algorithm
4: SatControl(currentBitrateUplink, currentRate)

. Keep track of last feedback received
5: lastThroughput← currentRate
6: lastTheoreticalBound← currentBitrateUplink
7: end procedure

These records are then passed on to the control algorithm [Algorithm 1:
line 4]. The control algorithm 2 adjusts the behavior of the client’s sender
program to keep saturating the link without committing any induced losses.
After the execution of Control Algorithm 2, the routine again waits for the
next ACK from the server.

4.6.2 NemFi record’s rate control algorithm

In rate control algorithm 2, as discussed in section 4.4.1, we get the peri-
odic PHY rate values on the client-side. This current up-link PHY rate is
passed on as an input variable to the control algorithm along with current
throughput achieved. This acts as a theoretical bound [Algorithm 2: line 2]
to the maximum PHY bit rate supported on the link. The actual usage of
the link capacity depends on many parameters such as frame aggregation,
type of aggregation i.e A-MSDU or A-MPDU, buffer sizes used as well as the
hardware and processing delays. Typically the link utilization which denotes
the fraction of supported bit rate lies between 80 to 90 percent with advanced
aggregation schemes.

At any instant, the difference between achieved throughput and the PHY
rate is the upper bound on the error of our estimated capacity[Algorithm 2:
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line 3]. Next, the challenge is to figure out when the link is saturated. We
define differential throughput gain as the difference between the last instance
of observed throughput and the current rate [Algorithm 2: line 4]. Thus,
differential throughput gain gives an idea of how much gain we achieved by
window adaptation done by the last call to Control Algorithm 2.

Algorithm 2 NemFi’s Rate Control algorithm

1: procedure SatControl(currentBitrateUplink,
currentRate) . Input feedback variables

2: theoreticalBound← currentBitrateUplink
3: error ← theoreticalBound− currentRate
4: diffThroughptGain← lastThroughput− currentRate

. Check if we need window size adaptation
5: if window < upperWindow &
satF lag 6= 0 & diffThroughptGain 6= 0 then

6: window ← window + alpha ∗ error
7: else
8: satF lag ← 1
9: end if

. Decrease window on MCS drop
10: if lastTheoreticalBound > theoreticalBound then
11: window ← 0.8 ∗ window
12: satF lag ← 0
13: else if lastTheoreticalBound < theoreticalBound then
14: satF lag ← 0
15: end if
16: return . Control Algorithm executed for this round
17: end procedure

The gain is practically large at the start of the application, but as we
get closer to saturation link utilization throughput gain will decrease and
decrease, until the arrival of a point when new packets are just queuing at
the client-side. The approach is to detect this point and stop sending more,
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to avoid buffer overflow and induced losses. This way the losses observed in
the trace are actual WiFi losses and thus, they could be replayed.

In order to get to saturation link capacity at the client-side at a par-
ticular instant, a constant number of packets in flight, or constant window
size is not sufficient. High constant window size would lead to overshooting
ideal saturation sending rate and content increase in losses due to the buffer
overflow. Whereas low constant window size would cause underutilization of
available link capacities as seen in Figure 4. Therefore an adaptive solution
is needed that somehow adjusts these windows during the time of recording.

In order to solve the above-stated problem, Algorithm 2 is introduced.
The window size in Algorithm 2 is kept proportional to the error in theo-
retical bound and current throughput recorded earlier [Algorithm 2: line 6].
The proportionality constant again could either be a constant or a variable
depending on the PHY rate supported at that instant. The constant alpha
will control how aggressively this saturation state is being targetted. Initially,
the saturation flag is false and as soon as we see that differential throughput
gain has become zero, we assign saturation flag as true in order to avoid
increasing the window size any further [Algorithm 2: line 8].

Moreover, on observing a PHY rate drop due to deteriorating channel
conditions, the window size is decreased to eighty percent [Algorithm 2:
line 10] and the saturation flag is turned false. This will cause the algorithm
to get to a new saturation state by adapting the window size on the further
reception of ACK packets. Drop in the window size could be as aggressive
as fifty percent on major drops, but in mobile client scenarios such as WiFi,
there are too many PHY rate fluctuations. Dropping the sending rate by a
large percentage would result in more transient time for reaching the next
saturation state. Eighty percent turned out to be reasonably quick in getting
the saturation state even in extremely mobile scenarios which lead us to
choose this value. Lastly, the saturation flag is also turned false on noticing
a major PHY rate improvement to increase the window possibly further and
adapt to a new saturation state [Algorithm 2: line 13].
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4.7 Implementation details

To understand WiFi behavior and shortcomings in current network emulators
for HTTP traffic and cellular networks, the first two months of this project
were spent for extensive research and experiments. From findings like the
effect of frame aggregation on achieved link utilization, hardware constraints
in the form of WiFi standards support, induced losses due to over-sending to
effects of cross-traffic on recording a wireless link were some of the milestones
achieved during that phase.

Next, Saturator [1] was chosen as a reference for NemFi’s record, and
changes in record Framework as well as added features were done in C++.
Several sub-modules in the Saturator needed to changed apart from the in-
clusion of Algorithm 1 and Algorithm 2 in the record framework. Most sig-
nificantly two instances of NemFi’s record were created to cater the special
needs of the client and the server application while performing the record.
Since most of the information in the record phase is retrieved from the packet-
delivery trace, a lot of trace processing needs to be done. Python was used
for this purpose(1000+ lines).
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Chapter 5

5 NemFi’s record: Performance Evaluation

This section discusses methods used to evaluate the NemFi’s record as well
as results and inferences from the experiments performed.

5.1 Experimental setup

The goal of experiments is capturing necessary packet delivery traces using
instances of NemFi’s record in a controlled WiFi network. Later in future
work, public access points and outdoor scenarios will be tested. While we
allow the sender to send UDP data packets on the wireless link, Ethernet
feedback is proposed to avoid unnecessary WiFi losses for the server ac-
knowledgements. Figure 7 describes the experimental setup.

Client - A
P WiFi Connection

Client Machine (HP 
Laptop)

Server Machine (HP 
Laptop)

Access Point(AP)

Ethernet Feedback 
Connection

Ethernet

(a) Static client

Figure 7: Experimental Setup of NemFi
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1. Client: HP Elitebook 840 G2 laptop with both WiFi and Ethernet
connection to access point

2. Server: HP Elitebook 840 G2 laptop connected to access point via
Ethernet

3. Access Point: TP-Link AC1750 connected with an Ethernet feedback
interface to the client as well as through WiFi.

The AP was a TP-Link AC1750, Archer C7 V5 which supports IEEE
802.11ac/n/a on 5GHz and IEEE 802.11b/g/n on 2.4GHz. We did our ex-
periments with IEEE 802.11ac/n/a on 5GHz with a channel width of 20 MHz.
It supports 5GHz Up to 1300Mbps. The two laptops are HP Elitebook 840
G2 with 5th Generation Intel Core i7-5600U 2.6 GHz (max turbo frequency
3.2-GHz), 4 MB L3 Cache, two active cores and four threads. Laptops have
8 GB RAM and 512 GB SSD hard drive.

The network interface card on the client-side is Intel Wireless 7265 with
iwlwifi driver. Client and Server both have Intel I218LM Gigabit Network
Connection (10/100/1000 NIC) cards for communications. Both the client
and the server machines have freshly installed operating systems to avoid any
unnecessary load on CPUs while running the setup. There are two NemFi
record instances running on the client machine as well as the target server.
The client instance constantly tries to send MTU sized packets on to the
wireless link, in order to keep it saturated.

5.2 Experimental scenarios

There are two scenarios considered for validation. Both of them are taken
indoors. In the static scenario, client and server machines are not moving
with respect to the access point. Whereas in the mobile scenario, the server
is stationary with respect to the access point but the client shows mobility
in home/office environments.

5.3 Evaluation metrics

There are two evaluation metrics for the evaluation of NemFi’s record. Through-
put in Mbps and instantaneous Packet Loss Rate obtained during the record
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phase. In forthcoming sections, both the metrics will be investigated for the
scenarios in which the client is static with respect to the access point as well
as when it is mobile.

5.4 Validation

To validate NemFi’s record next two sub-sections investigate whether through-
put obtained from NemFi’s traces reflect the capacity and whether the losses
captured by the packet delivery trace are indeed WiFi related losses.

5.4.1 Throughput validation

In Figure 8, we test the throughput achieved by the client under two sce-
narios for the NemFi’s record as well as state-of-the-art saturator [1] with a
very high window size of 1500. The client is kept near the Access point in
Figures 8a and 8b, whereas the client machine is mobile in Figures 9a and
9b. All the sub-figures show the actual throughput achieved vs supported
up-link bit rate. The supported up-link bit rate is sampled every 100ms and
average throughput over the same period. In ideal static scenarios, the PHY
rate achieved in 20 MHz at the client side is pretty constant i.e 15 or equiv-
alently PHY bit rate of 144.40 Mbits per second. Fairly stable throughput
of 128.20 Mbits per second could be seen on reaching the saturation phase
in both Figure 8a (NemFi’s record) and 8b (Saturator).
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Figure 8: Time-Series(Seconds) of throughput observed in the static
scenario

In the mobile scenarios too, we see in Figure 9a that the fluctuating
supported rate is tracked very well by NemFi’s record. Figure 9b is state-
of-the-art saturator [1] with buffer overflows. We see that NemFi’s record
tracks the supported up-link rates with similar preciseness.
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(a) NemFi’s record
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(b) Saturator

Figure 9: Time-Series(seconds) of throughput observed in the mobile
scenario.

Link capacity estimation

We use the model of Hora [5] to get the estimated link capacity of the
WiFi for different PHY rates. We use the results of this model to get the
instantaneous link utilization of NemFi’s record. A detailed explanation of
the usage of the model [5] for getting theoretical Link Capacity in order to
validate NemFi’s record may be found in Appendix (A.1).
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Physical Rate(P) Estimated Link Capacity(LC)
144 116.69
130 108.03
117 97.33
115 95.83
104 83.42
86 64.03
78 61.43
72 59.73
65 54.50
57 45.36
52 42.31
43 34.20
28 24.22

Table 1: Estimated Link Capacities

Comparison of estimated link utilization with that of NemFi’s
record

Now that estimated link capacities are obtained as of table 1, we could
now validate the record process of NemFi’s record too to see if around 100
percent of link utilization is achieved during the record phase. Results are
analysed by looking at link utilization for all the observed physical rates by
the client over multiple numbers of experimental runs.

Next in Figure 10, we look at the mean percentage link utilization
achieved and deviation from the estimated ideal rate by the client for NemFi’s
record as well as saturator with a very high window size of 1500 in both static
scenarios. In Figure 10a and Figure 10b, we see that link utilization near 100
percent is observed throughout the simulation duration for all the physical
rates encountered by both Saturator as well as our record.
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Figure 10: Percentage link utilization observed over ten experimental runs
in the static scenario

On the other hand in Figure 11, in dynamic scenarios too, due to MCS
fluctuations, there is always slight variability in mean link utilization. Look-
ing at these utilization values over ten runs, we observe that NemFi’s record
achieves better link utilization than saturator itself for the encountered phys-
ical rates. This could be explained by the fact that NemFi’s record due to
the rate adaptation algorithm does not send more than capacities in severe
sudden drops of channel quality. It prevents unnecessary processing at the
client machine of packets that will eventually be dropped.
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Figure 11: Percentage link utilization observed over ten experimental runs
in the mobile scenario

5.4.2 Packet loss validation

Packet losses are one of the most important quality metrics of wireless com-
munication. NemFi’s record aims at capturing these packet losses in order to
use them for emulation. Recorded losses would only make sense when they
are actual WiFi related losses. Thus, in this section, we would conduct some
experiments to check the validity of losses shown by NemFi record’s trace.

The packet loss incurred by the client is tested for NemFi’s record as well
as saturator with a very high window size of 1500 packets in flight in Figure
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12. The client is kept in close proximity to the Access point in Figures 12a
and 12b, whereas the client machine is mobile in Figures 13a and 13b. The
packet loss in all of the sub-figures is the instantaneous percentage packet
loss rate.
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Figure 12: Time-Series(seconds) of packet Loss observed in the static
scenario

Both in the ideal static scenarios as well as mobile scenarios i.e Figures
12a and 13a, NemFi’s record incurs negligible losses of around 0.20 percent
throughout the recording duration which are WiFi transmission losses. But
on the other hand in Figures 12b and 13b, saturator shows a constant
increase in losses as high as 50 percent, due to continuous induced losses.
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These losses are pretty high for the chosen window size of 1500 in saturator
due to packet drops by the buffer overflows at the client machine.

Thus, NemFi’s record is the framework that better captures the WiFi and
not show any misleading losses to be replayed. This is one of the significant
issues that this project addresses.
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Figure 13: Time-Series(seconds) of packet loss observed in the dynamic
scenario

Next, instead of losses in terms of time-series as shown previously, we look
at the results for ten runs of the experiment. Now let us look into the losses
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observed by the NemFi’s record vs the Saturator in static client scenario.
We observe that while NemFi’s losses depict WiFi losses as confirmed from
client driver’s dump which comes to around 0.18 percent; Saturator showed
high losses of around 10 percent in the same conditions due to induced buffer
losses locally at the client machine.
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Figure 14: Packet Loss observed over ten experimental runs in the static
scenario

Similarly, on looking across ten experimental runs in mobile scenarios for
the NemFi’s record and Saturator, it is seen that the same trend is being fol-
lowed as just above in static client use-case. While NemFi’s record showed
around 0.193 percent losses, induced losses caused around 11 percent loss in
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the Saturator.

Therefore, concluding observations can be drawn in terms of packet losses
observed by the NemFi’s record. Using Algorithm 1 and rate control algo-
rithm 2, true WiFi related losses are observed in the recorded traces. This
is essential in order to replay WiFi losses later in the replay phase. Looking
back into rapidly changing WiFi link capacities due to rate adaptation al-
gorithms, the adaptive control method proposed by NemFi completely takes
care of channel saturation as well as induced packet drops.
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Figure 15: Packet Loss observed over ten experimental runs in the mobile
scenario
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Chapter 6

6 NemFi’s replay: Design and Implementa-

tion

This chapter describes our replay method, which takes as input the packet-
delivery traces collected during the record phase. As already discussed in
Section 2.1.3, MahiMahi is used as a reference for the development of NemFi’s
replay. Though, MahiMahi being designed specifically for fixed-rate links or,
cellular links does possess many challenges to be solved in order to make the
framework suitable for WiFi.

6.1 Sharing the delivery opportunities between up-link
and down-link queues

NemFi’s replay places an incoming packet into either the up-link or down-
link packet queue depending upon the direction of arrival. At each delivery
opportunity, NemFi replay selects which queue to serve based on a schedul-
ing algorithm.

NemFi’s replay uses the algorithm 3 inspired by weighted round-robin, for
the same purpose. In algorithm 3, firstly we add the action of polling the
up-link and the down-link socket [Algorithm 3: line 2]. Then waitTime is cal-
culated after which NeemFi’s poller will check the added actions. This time
is the difference between the timestamp of the current index in the packet
delivery trace and the current timestamp of the system itself[Algorithm 3:
line 4].

After getting a callback from any of the sockets, the packet is read into
the linkQueue which contains the separate up-link and queues[Algorithm 3:
line 5]. Then a random number (randGen) is generated. If the number is
greater than percentShare and down-link queue is not empty, then queue di-
rection for the usage of opportunity is chosen to be down-link. Else up-link
queue is chosen for the consumption of current packet delivery opportuni-
ties[Algorithm 3: line 14]. Finally, actual usage of the delivery opportunity
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in contention happens for the queue in the direction just decided before.
Afterward, the index is increased by one for the next opportunity to be com-
peted for[Algorithm 3: line 15].

Algorithm 3 NemFi’s Queue sharing algorithm

1: procedure QueueShare(percentShare)
. Poll up-link and down-link sockets

2: poller− > AddAction(pollUplinkSocket)
3: poller− > AddAction(pollDownlinkSocket)

4: waitT ime← getWaitT ime()
. Address the callbacks after waitTime

5: if callback(pollUplinkSocket) then
6: linkQueue− > readPacket(uplinkSocket.read(), up)
7: else if Callback(pollDownlinkSocket) then
8: linkQueue− > readPacket(uplinkSocket.read(), down)
9: end if

. Whenever replay shell is rationalized/emulated till present
10: randGen← rand()
11: direction← up

12: if randGen > percentShare and size(packetQueueDown) > 0
then

13: direction← down
14: end if

. Actually use the delivery opportunity
15: if direction == up then
16: useDeliveryOpportunity(up)
17: else if direction == down then
18: useDeliveryOpportunity(down)
19: end if

20: end procedure
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6.2 Replaying frame aggregation

To replay the frame aggregation, NemFi uses the model of Hora [5] to es-
timate the total number of aggregated frames given the current PHY rate.
These values are found in table 3. As we already have PHY rates observed
at each entry in the packet delivery trace, an inference can be made for the
number of packets to group together for sending it to the output queue.

In the given trace for the NemFi’s replay, all packets which are part of
the same aggregate(A-MPDU or A-MSDU) have practically the same deliv-
ery timestamps. Thus, whenever the NemFi calls the replay shell to emulate
either the up-link or the down-link until the present time, AGG(P) (table
3) number of packets are sent to the output queue. The only case in which
the whole set of opportunities will not be grouped is when there are missing
sequence numbers in them. This is because of the losses in the aggregated
frame during the record phase. In that case, as soon as the missing sequence
number in the input trace is detected, no more packets are grouped in the
same emulation opportunity. This prevents the false usage of the actual
group of frame aggregated packets sent during the NemFi’s record.

6.3 Replaying WiFi losses

After capturing the actual WiFi losses by eliminating the induced losses at
the client machine, NemFi’s task for emulating WiFi losses becomes easier.
Every time a packet is being read from the socket into the corresponding
packet queue, we take a look at the instantaneous loss rate at the current
index in the packet delivery trace.

If the loss rate turns out to be positive then a new random number be-
tween zero and one is generated. If it is less than the current loss rate, then
we drop the packet read from the socket and that packet is not appended to
either of the packet queues.

6.4 Implementation details

A significant time was spent in choosing the replay framework to be used as
a reference for NemFi’s replay. After careful consideration and experiments,
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MahiMahi and the emulator introduced by it in the form of LinkShell was
chosen. One of the most challenging but essential tasks was to merge threads
for the up-link and the down-link queues. This is because in the case of WiFi,
we need to actively share packet delivery opportunities between up-link and
down-link flows.

C++ was used as a language for this task of merging threads. Then,
the poller also needed to be changed simultaneously for polling up-link and
down-link sockets from a single thread. Afterward, new features of replaying
frame aggregation and losses were added apart from adding the Algorithm 3
for realistically sharing the up-link and down-link queue.
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Chapter 7

7 NemFi’s replay: Performance Evaluation

Now that we have completed the design and implementation of both the
record and the replay phases of NemFi, we move to evaluate the overall solu-
tion. Apart from the traffic generated by the NemFi’s record, there is traffic
being generated by devices in the vicinity too. These flows are referred to as
cross-traffic. Before evaluating the replay itself, let us figure out how the in-
put packet-delivery opportunities behave in the presence of cross-traffic that
could be present during the record phase.

7.1 Consideration of cross-traffic

First, we want to understand if NemFi had any effect on the cross-traffic; i.e.,
whether it will take over the wireless medium by consuming all the available
delivery opportunities. That would be problematic because it means that
NemFi does not capture the real WiFi condition and available bandwidth.

We run the record in the same experimental setup as described in sec-
tion 5.1 but now there are two separate machines also connected to the same
access point of interest. On these two machines, we sequentially create single-
thread Secure Copy Protocol(SCP), single-thread TCP, 5, and 10 threaded
TCP as well as UDP traffic. We fix the bandwidth of UDP cross-traffic to
50 Megabits per second.

The result of the experiment in Figure 16 shows that NemFi’s record
is not saturating the channel all by itself as in previous experiments with-
out cross-traffic such as Figure 8a. It shows that indeed NemFi captures
available bandwidth. This is because the presence of cross-traffic leads to
the consumption of packet-delivery opportunities by flows of the non-client
machines. This also proves that NemFi’s record does contain information
cross-traffic in the recorded trace itself.
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Figure 16: Instantaneous throughput(Mbps) vs Time(s) observed by our
NemFi’s record in the presence of cross-traffic

53



7.2 Experimental results

7.2.1 Scenario

Before describing the experimental conditions in detail, we have a look at an
application that is used for validating NemFi’s replay: Iperf. Iperf is a net-
work performance measurement tool. It creates TCP or UDP data streams to
measure the throughput between the client and the server. The replay will
be evaluated with metrics of throughput achieved by iperf in actual WiFi
connection versus that inside the replay shell of NemFi. Iperf with client
and server instances is used as the application to evaluate the replay. Iperf is
run with the traces collected by the record module of Nemfi and we compare
the throughput of the application in the real network environment with that
of emulated conditions.

We perform the experiments in the static indoor scenarios with the client
being stationed a few meters away from the access point. All of the experi-
ments have been repeated 10 times for 50 seconds. We run the experiments
in the same experimental setup as described in section 5.1 except the fact
that NemFi replays the application traffic over the earlier feedback Ethernet
interface to avoid WiFi related losses twice.

We run the NemFi’s replay immediately after running the iperf on WiFi so
that the wireless environment is similar. Moreover, we repeat the experiment
multiple times in order to take into account the variability of the wireless
channel over the runs of application in NemFi and the WiFi itself.

7.2.2 Replay with just WiFi losses

In this sub-section, we look into the throughput achieved by the client in
up-link transmission to the server. We test for single-thread as well as a
5-threaded TCP connection. We see in the Figure 17 that in both kinds
of TCP connections, the mean throughput observed in the NemFi’s replay
is within the bounds of five percent to that of iperf over real WiFi conditions.

Sightly more throughput is observed occasionally in replay, which is ex-
plained from the fact that PHY rate based frame aggregation needs the
transmission opportunity txop duration. Txop duration used is currently
fixed in NemFi’s replay for the calculation of frame aggregation parameters
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such as the number of frames aggregated in an opportunity. The number of
frames aggregated is currently calculated as a function of the current PHY
rate. This is a fair approximation as seen by the results in the Figure 17. But
sometimes in the real hardware after incurring losses, the station is allowed
to aggregate a lower number of frames even with a high PHY rate. In the
future, we could fine-tune this device-specific behavior of frame aggregation
parameters in NemFi’s replay.
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Figure 17: Throughput observed by iperf with real WiFi conditions versus
NemFi
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7.2.3 Replay with forced losses

We measure the performance of Iperf with losses induced on the client ma-
chine with the help of TC command. TC command helps the client to ran-
domly drop a percentage of packets from the transmit queue in the kernel.
We look into the throughput achieved by the client up-link transmission for
a single-thread and 5-threaded TCP connection in the presence of 10 percent
packet losses induced by TC on the top of WiFi losses. We again see in
the Figure 18 that in both kinds of TCP connection, the mean throughput
observed in the NemFi’s replay is within a few percents to that of the iperf
over real WiFi conditions. This proves the validity of the NemFi’s replay in
the case of severe losses.
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Figure 18: Throughput observed by iperf with real WiFi conditions versus
NemFi with forced losses
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8 Conclusion and Future Direction

8.1 Conclusion

In this degree project, we presented a survey of existing trace-driven emu-
lation techniques for wireless networks. We showed how the state-of-the-art
emulator for the wireless network is tailored for cellular networks and the
reason it fails to faithfully emulate WiFi networks. The first problem we
identified was the fact that existing trace-driven emulator for cellular causes
severe packet losses when recording WiFi network conditions. To this extent,
we designed and developed a new routine for feedback during the record phase
which facilitated us to effectively implement the rate control algorithm. This
adaptive rate control algorithm accurately recorded the rapid variations in
WiFi PHY rates while keeping track of WiFi related losses.

Moreover, before the implementation of formulated methods, we also
looked upon fundamental questions for the record phase. NemFi also in-
vestigated aspects like capturing cross-traffic during the record as well as
whether one-directional record is enough to get a picture of a bi-directional
wireless link. Information regarding the frame aggregation was also logged
into the traces collected by the NemFi’s record apart from the packet-delivery
opportunities.

After validating the correctness of the record by comparing the link uti-
lization achieved by NemFi and the theoretical link utilization for that PHY
rate, we moved on to designing the sharing of up-link and down-link queues
for the distribution of packet delivery opportunities during the NemFi’s re-
play. A variation of the weighted round-robin was introduced to formulate
NemFi’s queue sharing.

Afterward, we introduced methods for replaying the captured frame ag-
gregation and WiFi related losses in the packet-delivery trace. We tested the
correctness of replay by evaluating the achieved throughput of iperf with real
WiFi conditions verses the replay environment of NemFi for single as well as
multiple threaded TCP. TC command was used to force losses which enabled
us to verify the behavior of replay in presence of heavy losses.

Thus, we conclude that the major contribution of this degree project is to
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introduce a new set of methods and algorithms in the form of NemFi, which
successfully brings and adapts the record-and-replay paradigm for WiFi em-
ulation.

8.2 Future works

This degree project achieved the objectives of introducing an accurate record-
and-replay method for WiFi. But in doing so, it opens up many directions
for further research and testing in the field of WiFi emulation.

In this degree project, however, the WiFi emulation solution, NemFi is
kept confined to being tested for static scenarios with respect to the client
as well as dynamic indoor office scenarios for validation of the implemented
record-and-replay pipeline. Outdoor testing could be done in the future to
adapt the NemFi if needed. Also, Access point in consideration for the test
purposes is taken as local instead of public one for more controllable and
infer-able results to validate the solution.

During the replay phase, we could re-investigate device-specific behavior
of frame aggregation parameters that are needed for the replay to fine-tune
the existing NemFi’s replay. We could look into the effectiveness of replay
in the presence of cross-traffic. Moreover, it would be interesting to test the
behavior of the most popular form of internet traffic i.e video traffic over
NemFi. Further research could be initiated to look into the evaluation of
latency-critical applications on WiFi using our proposed solution.

8.3 Ethical and sustainable aspects

During this degree project, we never violate the ethics of data collection.
Especially in the phase of collecting packet-delivery traces, none of the in-
formation collected contains personal attributes of any firm or an individual.
Privacy has been respected throughout this work. A personal WiFi network
was created and used for validation purposes in order to minimise any inter-
ference caused to other individuals during the testing phase.

Regarding sustainability, our software solution is kept as light as possible
to not only be efficient in terms of performance but also be power efficient.
NemFi does not require any extra hardware excluding regular client-server
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machines and the access point. This helps us in aligning with our goals of
conservation and sustainability.
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A Appendix

A.1 Calculation of estimated link capacity

To calculate the link capacity for a given PHY rate, P, we divide the UDP
payload of the A–MPDU by its transmission time where B0 is the fraction
of time the AP is busy sending beacons.

LC(P ) =
AGG(P )× UDPpayload
A−MPDUTxDelay(P )

× (1−B0) (1)

In order to calculate the UDP payload of the A-MPDU frame, we mul-
tiply the UDP payload per IP packet by the number of MPDUs sent at
P, AGG(P). AGG(P) is the number of MPDUs per medium access. Frame
aggregation in IEEE 802.11n reduces the MAC overhead by allowing the
delivery of multiple aggregated Mac Protocol Data Units (A-MPDUs) in a
single medium access.

We calculate this AGG(P) values experimentally for our experimental
setup by fixing the physical rate in the static scenario, sending at a much
higher rate with a constant window size of 2500, and measuring the number
of MPDUs transmitted in a transmission opportunity. These AGG(P) values
are shown in table 3

We compute the A-MPDU transmission delay by using the 802.11 pro-
tocol parameters (table 2) to model an A-MPDU exchange of N packets of
size S using PHY rate P.

TxDelay(N,S, P ) = TAIFS + TBO + 3× TSIFS + TRTS

+TCTS + TACK +DATA(N,S, P )
(2)

With no losses, the back-off timer does not exponentially increase. The
back-off timer is chosen using a uniform distribution between 0 and CWmin,
giving the expected value of CWmin2. We estimate the delay to transfer the
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data block as:

DATA(N,S, P ) =
22 +N × (SMH + S)

P
+ TPH (3)

Above, TPH is the transmission delay of the PHY header, and SMH is the
MAC header size which is 38 bytes. We add 22 trailing bits (16 + 6) to form
the OFDM symbols since we do not consider padding bits. To calculate the
estimated link capacity(LC), we use S = 1444 bytes, UDP payload of 1400
bytes and N = AGG(P).

We consider frame exchanges using Best Effort Access Category and the
use of implicit Block Ack Request. We consider control frames with PHY
rate at 24 Mbps, and assume that the PHY rate to transmit a control frame
is lower than that of a data frame. Finally, we calculate the estimated link
capacities for each physical rate as shown in table 1

As the WiFi link capacity varies over time, our model estimates the link
capacity for a given time interval. Even though the PHY rate changes over
time, the AP uses only one PHY rate for each frame. Thus, we can ob-
tain ”instant” link capacity measurements by applying the model previously
described. Let P(t) be the PHY rate used at t and FDR(t) be the frame de-
livery ratio at t. We estimate the link capacity for the time interval as follows:

LC(t0, τ) =
1

τ

∫ t0+τ

t0

FDR(t)× LC(P (t)) dt (4)

FDR(t) = 1− frameLoss(t) (5)

where frameLoss(t) is the instantaneous frame loss ratio. We periodically
sample the PHY rate of the last data frame, with periodicity λ over an esti-
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mation period τ

In our context, we use the following parameters,

Parameter Value
TAIFS 43 µs
TBO 139.5 µs
TSIFS 16 µs
TRTS 28 µs
TCTS 28 µs
TACK 32 µs
TPH 32 µs

Table 2: Model Instance Parameters

Physical Rate(P) AGG(P)
144 42
130 42
117 38
115 38
104 25
86 25
78 20
72 20
65 16
57 16
52 10
43 10
28 8

Table 3: Aggregate A-MPDU sizes in the experimental setup
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