Ad Hoc Networks 164 (2024) 103623

journal homepage: www.elsevier.com/locate/adhoc

Contents lists available at ScienceDirect

Lﬁd Hoc:

etworks

Ad Hoc Networks

Check for

Bleach: From WiFi probe-request signatures to MAC association
Abhishek Kumar Mishra ®*, Aline Carneiro Viana?, Nadjib Achir ®P

aInria, 1 rue Honore d’Estienne d’Orves. Campus de UEcole Polytechnique, Palaiseau, 91120, France
b University Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, Villetaneuse, 93430, France

ARTICLE INFO

MSC:
0000
1111

Keywords:

WiFi

Probe-requests

MAC address randomization
Frame association

ABSTRACT

Smartphones or similar WiFi-enabled devices regularly discover nearby access points by broadcasting man-
agement frames known as probe-requests. Probe-request frames relay, as information, the MAC addresses
of sending devices, which act as the device identifiers. To protect the user’s privacy and location, probe-
requests use a randomized MAC address generated according to the MAC address randomization protocol.
Unfortunately, MAC randomization greatly limits any studies on trajectory inference, flow estimation, crowd
counting, etc. To overcome this limitation while respecting users’ privacy, we propose Bleach, a novel,
efficient, and comprehensive approach allowing randomized MAC addresses to device association from probe-
requests. Bleach models the frame association as a resolution of MAC conflicts in small time intervals. We
use time and frame content-based signatures to resolve and associate MACs inside a conflict. We propose a
novel MAC association algorithm involving logistic regression using signatures and our introduced time metric.
To the best of our knowledge, this is the first work that formulates the probe-request association problem as
a generic resolution of conflicts and benchmarks the association concerning several datasets. Our results show
that Bleach outperforms the state-of-the-art schemes in terms of accuracy (as high as 99%) and robustness

to a wide range of input probe-request datasets.

1. Introduction

Modern WiFi-enabled devices find nearby networks using one of the
prominent methods in the WiFi protocol standard called active scan.
In active scans, mobile devices broadcast management frames called
probe-requests, which could contain physical (true) MAC addresses that
reveal their identity. Legacy devices transmit their true MAC address
in probe-requests. To protect user privacy, the WiFi standard strictly
recommends mobile devices change (randomize) their true MAC pe-
riodically. This reduces the correlation between probe-requests (with
unique MAC addresses) and the emitters [1].

MAC address randomization disrupts the continuity and semantics
of probe-requests and breaks the network data collection and analysis
process. While this mechanism protects the user’s privacy, it impacts
the continuity and accuracy of crucial works and strategies relying on
MAC addresses as user-device identifiers. Some of these works include
user trajectory inference [2-4] and crowd flow estimation [5,6], bring-
ing understanding of urban space usability, benefiting extended reality
or pervasive computing applications, or improving traffic management
or disaster response [7].

Further domains relying on the continuity of WiFi MAC addresses
include network security and intrusion detection by identifying devices
and monitoring MAC address patterns [8]. In location-based services,
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it improves indoor positioning accuracy and delivers personalized con-
tent [9]. User behavior analytics benefit from analyzing foot traffic and
crowd dynamics for improved customer experiences and safety [10]. In
smart cities and IoT, it manages connected devices and supports reliable
data streams [11]. Personalized user experiences in smart homes and
connected vehicles are enhanced through seamless connectivity [12].
Network management is optimized by understanding device mobility
and efficiently allocating resources [13]. Law enforcement and public
safety use it to track devices involved in criminal activities and monitor
movements in sensitive areas [14]. It tracks patients and medical equip-
ment in healthcare, ensuring connectivity and monitoring wearable
health devices [15].

To address continuity and accuracy issues, recent research exten-
sively explores MAC address association, which involves linking (associ-
ating) randomized MAC addresses emitted by a specific device. Current
frameworks claim high accuracy in de-randomizing MAC addresses
in their evaluation datasets. For example, [16] achieves over 80%
accuracy in a shopping mall, while [17] reports up to 75% accuracy
in laboratory settings. [18] achieves 67.6% to 80% uniqueness for 50
to 100 devices in music festivals and lab scenarios.
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These frameworks extract signatures from probe-request frames, cap-
turing unique device features for MAC association. Signatures are de-
rived from: (i) sequence numbers (SEQ) [16,19], (ii) fields like infor-
mation elements (IE) [16,18,20], (iii) timing patterns like inter-burst
time (IBT) [17], and (iv) RSSI values [16].

Despite their promise, these frameworks lack reliability across dif-
ferent validation datasets. We define reliability as the consistent ability
to accurately identify MAC addresses from the same device regardless
of the contextual scenario. Our observations show significant perfor-
mance discrepancies in varied environments, highlighting the need for
a more reliable approach and a robust algorithm.

Challenges arise in densely populated scenarios with frequent MAC
address changes, reducing the effectiveness of current signatures. In
response, we present Bleach (cf. Section 4), a novel framework that
ensures robust association accuracy, efficient runtime, and deploy-
ment. It performs well even with numerous simultaneous MAC address
changes.

Bleach operates through four steps: (i) Partitioning input datasets
that describe the MAC addresses of devices observed within a particular
zone into what we term “MAC trails”. These MAC trails are bursts
of probe-request frames associated with specific MAC addresses. (ii)
Identifying and characterizing conflicts between appearing and dis-
appearing MAC trails. (iii) Extracting and evaluating signatures from
these trails, ensuring their effectiveness across diverse datasets. (iv) Im-
plementing a novel MAC association algorithm to correlate randomized
MAC addresses.

These steps ensure Bleach’s improved performance compared to
the state-of-the-art. In summary, the major contributions of the paper
are as follows.

1. In Sections 2 and 3, we investigate and identify reliability is-
sues in current address association frameworks, emphasizing the
need for awareness and improvement. Section 6 characterizes
MAC association to enhance understanding and enable better
comparisons among existing and future works.

2. We introduce metrics to evaluate signatures and identify effec-
tive time- and frame-based signatures for correlating probes with
randomized MACs from a single device (cf. Section 7).

3. Bleach associates randomized probe requests based on ob-
tained signatures and their distance metrics (cf. Section 8). We
evaluate our framework across various scenarios with differing
degrees of observed conflicts (cf. Section 9), and we predict the
performance of association frameworks on new datasets.

4. We demonstrate that Bleach is effective even in highly com-
plex scenarios with extensive MAC address changes in the sniff-
ing zone.

We plan to release the open-source code of our framework on usage
demo and potentially a few anatomized datasets. Finally, we conclude
the work and discuss future perspectives in Section 10.

2. Background and state of the art

In the subsequent section, we will explore the fundamentals of
WiFi active scanning and MAC randomization within current WiFi stan-
dards. Additionally, we will review the existing literature on association
frameworks.

2.1. WiFi active scanning and MAC randomization

WiFi-enabled devices use active scanning to locate nearby wireless
networks, or access points (APs) [21]. During active scanning, devices
send probe-request frames. APs respond with probe-response frames
if the probe-request matches their Service Set Identifier (SSID) or
a wildcard SSID. These unicast responses help the device evaluate
available networks based on signal strength, security settings, and user
preferences.
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Probe-request frames are periodically broadcasted to conserve en-
ergy. Fig. 1 shows the active scanning process over time, where devices
send probe-requests on available channels and receive responses from
accessible APs, performing multiple rounds of active scanning.

Active scanning rounds last a few seconds, depending on the number
of known access points and non-busy channels. As shown in Fig. 1,
multiple rounds contain bursts of probe-requests captured by the sniffer,
with the MAC address of individual probes within a burst remaining
consistent. However, the MAC address is likely to change (randomize)
in subsequent bursts, a process known as MAC randomization [Section
12.2.10, [21]]. The longer it takes for a device to discover a network,
the more probes will circulate, increasing the number of randomized
MACs.

The number of bursts advertising a certain MAC address varies
and depends on the manufacturer and the device’s state. The inter-
burst time (IBT) between successive bursts also varies by manufacturer.
Most modern WiFi devices use randomized addresses instead of their
physical or true MAC address, while legacy devices may still broadcast
their true MAC addresses.

As discussed in the subsequent subsection, the literature suggests
that randomized MAC addresses in probe-requests can be correlated to
the sender device using various attack methodologies, a process called
MAC address association.

2.2. Issues in MAC randomization

The current implementation of MAC randomization is susceptible to
certain vulnerabilities, that lead to MAC association, arising from:

1. Inference from temporal behavior: The time-interval patterns
between probe-requests with randomized MACs could help point
them to specific devices.

2. Inference from spatial behavior: If randomized MAC addresses
are frequently observed broadcasting a certain SSID or near a
specific location, they can be linked together.

3. Behavior of MAC addresses: The inconsistency or specific pat-
terns in the implementation of MAC address randomization can
give hints for finding links between randomized probe-requests
and a user device.

4. Inference from contextual information: The contextual in-
formation like the name of devices and IP addresses can help
associate randomized MAC addresses.

5. Content of probe-requests: The information contained in
probe-requests, such as SSIDs that the user-device is willing to
connect helps link various randomized MACs from the same
device.

6. Behavior of users: We can investigate the behavior of users
such as their times when they connect their devices. Moreover,
users’ frequent visits could potentially assist in MAC association

Manufacturers progressively change and adapt their MAC address
randomization methods. This might lead to changing the effectiveness
of MAC association frameworks across device populations. Next, we
look at the related works in the MAC association before checking their
effectiveness and identifying the current shortcomings in Section 3.

2.3. MAC association literature

For MAC associations, current solutions explore different avenues to
understand and manipulate the associations between randomized MAC
addresses. Address association in the literature relies on two primary
approaches: (i) identifying vulnerabilities (leaks) in system design or
protocols, and (ii) extracting device-specific signatures from the probe-
request transmission. We compare literature association frameworks
and the novel framework introduced in this paper, Bleach in Table 1.
In the following, we investigate the works mentioned in Table 1 based
on the adopted strategy:
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Fig. 1. A device’s randomized probe-requests.
Table 1
MAC association frameworks’ comparison.
Framework Information Signatures Evaluation
leaks
Information Temporal Sequence RSSI Many Benchmarks
element number contextual
scenarios
[20,22,23] v X X
[18,20,24,25] v X X
[20,26,27] 4 X X
[16,28] v v v X X
[29] 4 4 4 4 X X
Bleach v v v v v

- Information leaks: Early studies on address association leverage
information leaks in protocols or system designs to establish links be-
tween randomized MAC addresses and specific devices. For instance,
both [20,22] engage in reverse engineering of probe-request Univer-
sally Unique Identifier-Enrollees (UUID-Es) to identify true MAC ad-
dresses using precomputed hash tables. In [20], the authors exploit
certain devices’ auto-connect feature to connect to SSIDs with popular
but potentially malicious names, which might inadvertently reveal
their true MAC address. Some devices assign consecutive MAC ad-
dresses for BLE and WiFi, creating an opportunity to unveil the WiFi
MAC address [23]. It is important to note that these methods are not
universal and depend on vulnerabilities in the system design, which
manufacturers typically rectify once brought to their attention.

- Signatures: The second approach relies on identifying signatures,
which consist of metrics extracted from probe-request transmissions
to differentiate devices. Recent frameworks use four key metrics for
generating these signatures.

The first metric analyzes the information element (IE) field in probe-
requests to uniquely fingerprint devices [16,18,20,24,25]. This field
contains information about device capabilities or SSIDs, with specific
combinations of IE fields selected to maximize signature effective-
ness [20].

The second metric examines the temporal characteristics of probe-
requests, such as inter-arrival times, to distinguish between devices
with randomized MAC addresses. Distinct patterns in temporal behav-
ior arise from manufacturer disparities [17,30-33].

The third metric uses the consistency of sequence numbers to dif-
ferentiate between randomized MAC addresses that change within
a specific timeframe. This relies on the range of sequence numbers
broadcasted by different devices [16,20,26,27].

The final metric involves utilizing RSSI vectors captured by different
sniffers. Devices with changing MAC addresses will have similar RSSI
vectors, aiding in address association [16,28]. However, RSSI measure-
ments are volatile in time and position [34] and are not reliable as
device-specific signatures.

There is a lack of literature on effectively combining these signature
metrics. [16,28] combine IE, sequence number, and RSSI, but the
resulting signatures do not achieve high association accuracy in various
scenarios (cf. Section 3).

[29] examines a combination of attributes related to the content and
length of optional fields within transmitted frames. They use density-
based clustering algorithms, such as DBSCAN, OPTICS, and HDBSCAN,
to group frames sent by the same device. However, the study does not
explore the effectiveness of different signature metrics.

Evaluations in controlled semi-anechoic and bus scenarios involve
around 30 devices in proximity, with mean accuracy in bus scenarios
reaching 75%. The limited number of devices and the short duration
of dataset collection (approximately 30 min) suggest the algorithm
primarily handles a small number of simultaneous randomized MAC
address changes.

Remaining challenges: It is essential to choose and integrate signature
metrics comprehensively. We need to assess the resulting association
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Table 2

Used datasets.
Name Nature # Probe-requests Duration # Sniffers
University Outdoor 1M 6 Weeks 5
Mall Indoor 331560 6 h 5
Trainstation Mixed 190941 6 h 5
Vaticanl Outdoor 589278 6 h 5
Politicsl Indoor 564900 6 h 5
HongKong Indoor 5M 1 day 21

framework’s performance in situations where device populations vary
significantly and there is a high frequency of MAC address changes.
With this integration, the framework may become more reliable, par-
ticularly in environments with a high concentration of devices (cf.
Section 3).

2.4. Datasets used in MAC association literature

Besides MAC address association frameworks, it is essential to ex-
amine their evaluation methodology and, more precisely, the datasets
used in these studies. Most of the works rely on an evaluation us-
ing datasets that are gathered in controlled environments, such as
laboratories [17,18,20,24-26]. In addition, most of these datasets are
not public. Unfortunately, utilizing self-generated datasets, particularly
those limited in scale, not only raises concerns about replicability but
also introduces a level of lack of reliability when applied to a new input
dataset featuring a substantial number of devices. The alternative is to
use public datasets obtained from large-scale collection campaigns. We
can rely on Sapienza [35] and HongKong datasets [16].

The Sapienza datasets, gathered in 2013, contain five different con-
textual scenarios: university, mall, train station, vaticanl, and politics1.
Each dataset was compiled by 5 researchers using their laptops in
various environments, including outdoors, indoors, and mixed settings
(see Table 2). These datasets are non-randomized, requiring a trans-
formation for evaluating association solutions. For example, in [17],
for each set of m consecutive bursts, a random MAC address can be
generated and substituted to the true MAC address in the dataset.
The recorded correspondence between the true MAC address and the
random MAC establishes the ground truth. We also introduce a measure,
v, which denotes the percentage of devices (true MACs) in the dataset
for which we apply the above randomization procedure. We consider
two cases: a half-randomized trace (y = 50%) and a fully randomized
trace (y = 100%).

On the other hand, the HongKong dataset, used in [16], contains
a day of probe-request data collection. This was conducted on an
entire floor of a large shopping mall in Hong Kong in 2021. It repre-
sents a dense scenario featuring a substantial volume of probe-requests
containing true and randomized MAC addresses. However, it lacks
a ground-truth. The data was collected using multiple WiFi sniffers
implemented on commercial WiFi Access Points, which captured probe-
requests. These sniffers operated on channel 1 of the 2.4 GHz band.

Bleach uses all the datasets in Table 2 for the framework eval-
uation, enabling the accuracy to be evaluated in varied contextual
scenarios, with and without ground-truth.

3. Pitfalls in MAC association literature

We illustrate the limitations of existing frameworks by assessing
two case studies from the literature, denoted as follows: (1) Info-
com21 [16] and (ii) WiSec16 [17]. These case studies were selected as
they cover all major association methodologies, including the use of se-
quence numbers (SEQ), information elements (IE), timing information
from the received frames, and signal strength (RSSI).
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3.1. Assessment methodology

In the Infocom21 study, the authors utilize the HongKong dataset.
To assess the effectiveness of their approach, they include frames trans-
mitted by a small number of older devices that advertise the true MAC
address. This approach allows them to address the absence of ground-
truth for randomized MAC addresses in relation to the originating
device. Infocom21 uses IE, sequence number, and RSSI as metrics for
their signature.

In WiSec16, the authors use a probe-request dataset collected in
a controlled indoor laboratory environment and focus exclusively on
frames advertising the true MAC addresses. After that, they introduce
randomization by assigning a new random MAC address to the true
MAC after every four bursts of probe-requests per device in the trace.
WiSec16 uses temporal information from probe-request bursts to infer
signatures that are eventually utilized for association.

We assessed their performances using the same dataset traces from
the public Sapienza datasets for a more fair comparison between the two
approaches. As in WiSec16, we randomize the traces while retaining
the ground-truth information. We selected three trace scenarios: Vatican
1, Trainstation, and Mall. The chosen datasets reproduce indoor and
outdoor scenarios. Mall dataset is equivalent to the shopping mall
dataset condition utilized in Infocom21. All chosen scenarios denote
public spaces with large populations with mobility conditions varying
from static low to highly mobile devices. vatican 1 dataset captures an
event in a public square while the other two scenarios are places of
visit with considerable human mobility.

We consider the two major signature components used by In-
focom21 in their association framework: (i) IE and (ii) SEQ. The
remaining third component, RSSI, requires the overhead of placing a
large number of sniffers close to each other in the sniffing zone to
obtain an effective vector of observed RSSIs for a particular probe-
request. Moreover, the RSSI component contributes as low as 10% in
the final association accuracy of Infocom?21.

Infocom?21 uses discrimination accuracy as a metric to evaluate the
potential of signatures in associating MAC addresses. It is defined as the
ratio of the number of correct associations in the randomly selected
probes. The authors consider the accuracy metric for 1000 frames for
the association. For each of the selected frames, they only consider the
frames received during the period between its reception and r seconds
before that. We choose this period = as 600 s (maximum utilized period
in Infocom21) to test the limits of the framework in scenarios with
high conflict.

In the WiSec16 approach, timing information, precisely the inter-
arrival time between received frames, is used to link randomized
probe-requests. The authors assess the accuracy of their association
framework using a limited laboratory dataset where they artificially
introduce ‘“‘ground-truth” associations.

These controlled indoor data collections involve a relatively small
number of devices (only 100) implementing MAC randomization. Such
conditions are unlikely to pose a significant challenge to the effective-
ness of the employed signatures, resulting in relatively higher accuracy.
Furthermore, devices in a laboratory setting typically exhibit longer so-
journ times compared to outdoor environments, which aids in correctly
deducing the timing signatures.

In light of these considerations, we comprehensively evaluated
WiSec16 across all selected scenarios to thoroughly examine its ro-
bustness and performance.

3.2. Literature shortcomings

Table 3 shows that discrimination accuracy achieved by Info-
com21 varies significantly. Both signature components, [E and SEQ
suffer significant drops and instability in the obtained accuracy. Train-
station dataset has considerable mobility, a medium-crowded scenario,
and the possibility of the presence of APs, which decreases the number



A.K. Mishra et al.

Table 3

Case studies: Infocom21 [16] and WiSec16 [17].
Framework Scenario Signature Parameter Accuracy
Infocom21 Mall 1IE 7 =600 42%
Infocom21 Mall SEQ 7 =600 9%
WiSec16 Mall Timing y =50% 22%
WiSec16 Mall Timing y = 100% 9%
Infocom21 Trainstation 1IE 7 =600 59%
Infocom21 Trainstation SEQ T = 600 11%
WiSec16 Trainstation Timing y =50% 24%%
WiSec16 Trainstation Timing y = 100% 13%
Infocom21 Vaticanl IE 7 =600 40%
Infocom21 Vaticanl SEQ 7 =600 8%
WiSec16 Vaticanl Timing y =50% 20%
WiSec16 Vaticanl Timing y = 100% 10%

of probes sent by a device. Mall dataset represents an indoor scenario
with relatively larger crowds and, consequently, a higher density of
observed probes. In contrast, Vaticanl dataset shows a very crowded
outdoor environment comprising the general audience and nearby
commuters listening to the pope in St. Peter’s Square. This leads to
a high number of probe-requests captured by the sniffer unit of time,
potentially lowering the association accuracy.

The discrimination accuracy demonstrates notable variations across
different scenarios, as evident in Table 3. The discrimination accuracy
is relatively high in scenarios with lower population density, such as
the Train-station. However, in highly crowded outdoor settings like
Vaticanl, the accuracy of signature components drops notably. It is
worth noting that the decrease in accuracy is more pronounced for SEQ
compared to IE.

A similar pattern is observed in the accuracy results obtained for
WiSec16, as illustrated in Fig. 9. The framework displays sensitiv-
ity to changing scenarios and the degree of MAC randomization (y)
considered in the dataset. When examining a probe-request trace with
complete randomization (y = 100%), the achieved accuracy plummets
to just a few percentage points. In terms of data collection scenarios,
once again, we observe a decline in accuracy in the Vaticanl scenario,
while the Trainstation scenario exhibits relatively better accuracy.

Henceforth, we identify that the existing studies encounter chal-
lenges related to subpar accuracy and vulnerability to diminished
performance when applied to new input probe-request datasets. These
shortcomings arise because these studies are typically evaluated either
within controlled settings or in the absence of reliable ground truth data.

To address these limitations, it becomes essential to holistically inte-
grate generic signature metrics, such as temporal information extracted
from frames, alongside content-specific signatures like IE and SEQ.
What needs to be improved in current research is the introduction of a
generic methodology for gauging the effectiveness of signatures derived
from the aforementioned metrics.

3.3. Paper positioning

We introduce a new MAC association framework named Bleach.
Bleach leverages two pivotal concepts associated with signature effec-
tiveness: consistency and discrimination power.

Consistency refers to the ability of a set of signatures to consistently
and reliably associate probe requests, even in the presence of dynamic
changes in MAC addresses over time. It helps us gauge the framework’s
stability and reliability.

Discrimination power assesses the framework’s capability to accu-
rately distinguish between different devices based on their probe re-
quests. It measures how effectively the signatures can separate de-
vices, especially in scenarios where multiple devices exhibit similar or
identical behaviors.

Using the above concepts, we carefully choose our signatures and
exploit them to introduce a novel MAC association algorithm. We

Ad Hoc Networks 164 (2024) 103623

formulate MAC association as the resolution of conflicts arising from
observed MAC address changes over a certain time period, as discussed
in Section 6 and detailed in the work by [36]. These conflicts represent
situations where multiple MAC addresses could potentially be associ-
ated with the same device, and resolving them is essential for accurate
device tracking.

As we delve into the specifics in , we examine the distribution
of conflict sizes observed in various time periods within a new input
probe request trace. This distribution serves as a valuable predictive
indicator (benchmark) for the performance of the Bleach frame-
work. Bleach demonstrates its robustness by performing effectively
across a wide spectrum of conflict sizes encountered in the probe-
request dataset, further emphasizing its adaptability and reliability in
real-world scenarios.

It is noteworthy to point out that the concepts of consistency and
discrimination power, which are further discussed in Section 7, represent
the first instances in the literature where one can forecast the efficiency
of any set of signatures. This capability enables the selection of the most
effective metric from a vast array of potential signature metrics.

4. Bleach framework overview

The framework Bleach takes probe-request trace with random-
ized MAC addresses as input and yields a dictionary (&/) of random-
ized addresses (M ) associated with particular devices (U,). &/ can be
represented as:

o = (Uy(My, M), ..., M), ..., Uy(Mg, My, ..., M)}

It consists of four major steps as shown in Fig. 2.

In the first step, we transform the input probe-request trace into
a set of MAC address trails. Each MAC trail can be viewed as an
instance of the appearance or the disappearance of a MAC address in
the sniffing zone. This reduces the problem of MAC association to that
of correctly associating each disappearing MAC trail from a device with
an appearing trail from the same device. We detail the process of MAC
trail generation in Section 5.

In the second step, we separate the trails into disjoint subsets
comprising conflicts () (cf. Section 6). The conflict denotes the set
from which a disappearing MAC trail could be possibly associated with
any of the appearing MAC trails present in the dataset within a period
(T.") from the end of the disappearing trail. We identify this period
as the conflict period. The right value of the conflict period allows us
to consider all potential associations while deciding to link the MAC
address trail pairs.

Conflicts are caused by devices changing their MAC addresses or
their entry/exit from the sniffing range. Any address association frame-
work has to resolve conflicts to perform correct assignments between
the disappearing and appearing MAC from individual devices. After
obtaining conflicts of MAC address changes and a generic formulation
of the MAC association problem, we take a step further toward the
association itself. We need to obtain effective signatures for resolving
conflicting MAC address trails.

In the third step, we define and extract the time and frame-based
signatures (8, 8,) from the collected MAC trails (cf. Section 7). We
consider two types of signatures in this paper: (i) time-based signatures,
which utilize the information from the temporal behavior of received
probe-request frames, and (ii) frame-based signatures, which use the
control field information present in the captured frame itself to form
effective signatures that have the potential of discriminating a device
from the rest of the population.

Finally, in the last step, we introduce our novel MAC association
algorithm capable of accurately resolving the conflicts observed in
the input dataset. It uses extracted signatures (&) to fingerprint and
differentiate randomized MACs in each conflict duration to finally
associate them (cf. Section 8).

The following sections detail each of the above-mentioned steps of
the Bleach framework.
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5. Step 1: Extracting MAC trails

We divide the input dataset into MAC address trails, t+/. A MAC
address trail (cf. Sections 6 and 8) comprises a group of probe-requests
sent from a device with a particular MAC. For each MAC address (M)
seen in the dataset, we extract two trails from it, as illustrated in Fig. 3.
One denotes the start of the M;, which we label as an appearing trail
(tr{n), while the other showcases the end of thg advertisement of M s
which we name as a disappearing MAC trail (7 ).

Trails of both natures, though, contain the same bursts (b,) of
probe-requests emitted by the device, with the MAC address as M;

J
as described in Eq. (1). Each burst contains varying number of probe-

requests (p,,), i.e. b, = {p|.pys . P}
tr) il = {by,by,....b,} (€))

We consider the appearing MAC trail for association at times-
tamp (trijn)s’””, while we consider the disappearing trail for subsequent
association at the timestamp (tri )0 as shown in Fig. 3.

This distinction in the nature of trails eases the formulation of the
address association problem by simplifying it into the correct matching
of each disappearing MAC trail (with address M) to an appearing MAC
trail (with address M,). Each trail additionally has its characteristic
features describing its temporal characteristics (transmission duration,
frequency of probes e.t.c.), its nature, and subsequently, the informa-
tion about composing the signatures from probe-request groups. We
denote the set of appearing trails in the dataset as ;, and the set of
disappearing trails as 7.

6. Step 2: Obtaining conflicts

After the preliminary step of our framework Bleach, we have a set
of appearing and disappearing MAC trails from the input dataset. In the
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Fig. 4. An illustration of conflict periods (7,").

second step, Bleach identifies MAC association as the resolution of
conflicts. A preliminary idea of MAC conflicts in BLE is also discussed
by [37]. We redefine it comprehensively with respect to WiFi probe-
requests. Next, we describe the characteristics of conflicts and the
methods to obtain them.

6.1. MAC conflicts

For each disappearing MAC trail (”’éu:)’ we denote a time period
(T/7) starting from the end of #/ ,, called as conflict periods (T,"). We
illustrate conflict periods in Fig. 4 where dotted lines in different colors
represent different appearing and disappearing MAC address trails of
devices in a T,".

Formally, we define a conflict (cf. Fig. 4) between a disappearing
MAC trail, ”’éut and an appearing MAC, trfn, if the two trails satisfy the
condition mentioned in Eq. (2).

ki) s (T < (or)

out

)stop’ (tr;cn)start < (Tc‘ri )end (2)

ut

Here (trf.‘n)”“” an_d (n{;u,)s"’" are the start and stop timestamps of the
trails 1 and #/, . (T,")%" and (T} are the beginning and end
timestamps of a particular conflict period T,".

As we already know, each MAC trail (/) consists of probe-request
bursts. To isolate individual bursts from respective devices, we inves-
tigate burst-related parameters. Isolating and investigating individual
and adjacent bursts is critical in choosing the right value of conflict
period, T," as MAC addresses from a single device only change on a
new burst of probe-requests. A small value of T," will cause Bleach
to miss a potential correct association of a disappearing MAC trail to the
appearing one as the new burst will start after the chosen T.". A very
large value would mean considering unnecessary associations, as it is
highly unrealistic for the duration between two consecutive bursts from
a device to be too big. These unnecessary associations lead to higher
time complexity of the framework.
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Fig. 5. Inter-frame duration(s) (IFS) in Accumulation of all devices in (a) HongKong dataset, (b) Sapienza datasets.

6.2. Choosing burst parameters

We define two parameters related to bursts: (i) Burst duration (,)
and (ii) Conflict period (7,'). Understanding the burst duration is
crucial as each MAC address trail (1) in Fig. 4 consists of sequences of
bursts, with each burst containing multiple frames. Isolating bursts aids
in the development of signatures as well (cf. Section 7.1.1). Conversely,
T." enables the identification of conflicts that Bleach must consider
when associating a disappearing MAC address that may have been
randomized.

We analyze the histogram of inter-frame durations (IFS) observed
in captured frames from the HongKong and Sapienza datasets. IFS
represents the time difference between two consecutive probe-requests
sent by a specific device, as observed by the sniffer.

Fig. 5(a) displays two prominent peaks in IFS bin counts: one in the
millisecond range and a smaller peak in the second range. Similarly,
Fig. 5(b), encompassing all scenarios in the Sapienza datasets, exhibits
distinct peaks in the millisecond range and several smaller peaks in the
second range. This phenomenon is expected as devices transmit probe-
requests in bursts across different channels to solicit responses from
nearby access points.

The IFS within bursts is typically short due to consecutive trans-
missions, whereas longer IFS values indicate intervals between bursts
from the same device, suggesting new probing rounds occurring after
a period of time (a few seconds). Therefore, frames with IFS less than
1 s likely belong to a single burst, indicated by the major peaks, while
those between 1 to 10 s represent inter-burst times (IBT), as denoted
by smaller peaks.

Consequently, we define the burst duration (z,) as 1 s. The conflict
period (T}) is set to 10 s, enabling detection of MAC address changes
associated with new bursts from devices within a conflict (€).

7. Step 3: Obtaining signatures

Signatures (&) are deductions from exhibited characteristics of a
device or entity, which allows isolating it from the rest of the pop-
ulation. We propose and use two signatures extracted from captured
probe-requests to associate randomized MAC addresses from a device.

In the following, we first present our choice of signatures for as-
sociating randomized WiFi MAC addresses inside Bleach framework.
Then, we proceed to present details for computing the chosen signa-
tures. Finally, we end the section by justifying the choice of considered
signatures.

7.1. Chosen signatures
We choose (i) Time-based signatures and (ii) Frame-based sig-

natures for our association framework. Time-based signatures utilize
the timing-related information obtained from the frame reception by a

sniffer from respective devices. These signatures are effective choices
as they are generic and independent of the device type.

We combine the time-based signatures with the frame-based signa-
tures. Frame-based signatures supplement the cases where the timing
information from the frames is not representative of a device due to
fewer probes or the high variability in timing information per user
device. Next, we discuss the choice and effectiveness of these two
signatures in detail.

7.1.1. Time-based signature

We already illustrate the behavior of IFS in Fig. 5 when analyzing
probe-request bursts. The properties of a burst could be extracted
that are unique for an observed device in the dataset. We choose
the timing information: mean inter-frame time (IFS) across individual
probe-request bursts as the time-based signature (&,) for the device
advertising a particular MAC address. Mean IFS is the average interval
between subsequent probe-request frames received from a device inside
a burst while considering all the bursts from that device. The idea is
that the frequency of sending probes during an active scan of networks
is likely to differ across devices while remaining unique for the same
device. Hence,

S§ = ulFs

For the calculation of xS in a MAC trail, we take the mean of
IFS values inside a burst while considering all observed probe-request
bursts in the trail.

7.1.2. Frame-based signature

For frame-based signatures, we investigate the information elements
(IE) [Section 9.4.2.1, [21]] contained inside a probe-request frame. This
field depicts the abilities of the sending device, which is used for its
negotiation with the access point. There are multiple IE fields referred
to by their Element IDs, which range from 0 to 255 [21]. We look
at around 500,000 frames from the HongKong dataset and investigate
specific capabilities advertised by the probe-requests as a part of IE.

The inclusion of Information Elements (IEs) within the probe re-
quest is not obligatory, but they are necessary for specifying the sup-
ported functionalities of the device. Each device could send all the
IEs or only a subset of them, depending upon the context where the
WiFi device is situated, the manufacturer, etc. We take the maximum
occurring elements of IE in the probes we investigate.

The top 8 most probable metrics that are likely to be consistent in
terms of presence are shown in Table 4. Hence, we select frame-based
signature as:

Sy ={er.ep,e3,e4,5, 6,07, 5}

We investigate the potential of this signature in being discriminative in
Section 7.3.
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Table 4

Most frequent IE elements.
Name IE element Percent occurrence
e SSID 100
e, Supported Rates & BSS Membership 100
ey Extended Supported Rates 99.51
ey HT Capabilities 82.60
es Vendor Specific 62.56
e Extended Capabilities 54.52
e; Interworking 13.5
eg VHT Capabilities 2.43

7.2. Computing MAC trail signatures

After obtaining the formulations for time and frame-based signa-
tures, we proceed to finally give details for computing them for each
MAC address trail in the input dataset (cf. Algorithm 1). In Algorithm
1, we illustrate the application of the first step of Bleach too for
completeness.

We first isolate/group probe-requests per MAC (M) to collect all
the individual probe-requests bursts to advertise that address. Grouping
into bursts takes into account the burst duration (7,) that we calculated
earlier (cf. Section 6). For each burst group with MAC M ;> we add an
instance of appearing and disappearing MAC trails in (7;,) and (7,,,)
respectively.

Algorithm 1 Computing Signatures

1: procedure COoMPUTESIGNATURES(?), S f) > input variables
2: B« ¢ // Dictionary of probe bursts

: S« ¢ // Dictionary of signatures
// Appearing MAC trail

// Disappearing MAC trail

3

& T,ed

S5t 7;11[ « ¢

6: for M; < ¥ do
7 P < GroupProbes(X, M;, ;)
8 Tins Tows < Trail M ACs(P)

9

: BIM;] < P
10: end for
11: for try,,tr,, < T;,, T, do
12: Sin> fowr < RandSamples(tr;,), Rand Samples(tr,,,))
13: Sltry,] < (S, ulFS,, )
14: Sltr ] = (S, ulFS,, )
15: end for
16: return S

17: end procedure

For each MAC trail in #r;, and tr,,, we randomly select a representa-
tive frame for that trail (f;, and f,,,). We use f;, and f,,, for calculating
the frame-based signatures (§ j,f’” and & ff"“’) of the considered MAC trail.

We finally obtain trail signatures (S'[tr;,] and S[tr,,]) as a tuple
comprising of frame-based signatures and the mean inter-frame space
(u'FS) of the considered appearing (tr;,) and disappearing trail (tr,,,)
respectively.

7.3. Evaluating chosen signatures

We have to formulate the effectiveness of a signature to ensure that
the association is likely to be the correct one. The two factors that
we identify as generic indicators for a signature’s performance are: (i)
Consistency and (ii) Discriminating power.

Consistency measures the ability of a signature to be uniform for
a single entity across multiple instances of itself in the population.
In our case, the population is the set of WiFi devices emitting probe-
requests while a single entity is a particular WiFi device. The multiple
instances are multiple probe-requests/probe-request bursts with ran-
domized MACs from the same device. The intuition is that the signature
should not be volatile for a single device itself in the first place and
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should ideally be able to associate all MACs from a device. Hence, a
high consistency value is essential for an effective signature.

Once a signature validates consistency per device, the second factor
we should complement it with is the discriminating power. It implies
that the signature values should be variable across devices in the
dataset. Ideally, the larger the size of the range from which the device’s
signature exhibits its values, the higher the chances of it to be correctly
associating randomized MAC addresses among those in the population.
Multiple devices with similar signature values are likely to lower the
accuracy with which a signature correctly associates addresses.

Limitations of Signatures: Time-based signatures face several limita-
tions, including high variability in timing information across different
devices and environments, insufficient data in scenarios with fewer
probe requests, and susceptibility to external factors like network con-
gestion or interference. Similarly, frame-based signatures have their
own limitations: the inclusion of Information Elements (IEs) within
probe requests is inconsistent and not obligatory, leading to variability
in the available data. Additionally, the IEs can vary depending on the
manufacturer, device state, and context, affecting the uniqueness and
reliability of the signatures. Furthermore, the selected IEs may not
always provide sufficient discriminative power to distinguish between
devices, especially in dense environments.

In the following, we acknowledge these limitations and show that
our careful choice of signatures minimizes the impact and ensures high
consistency and discriminating power.

7.3.1. Time-based signatures

We illustrate the consistency of the time-based signatures. We first
compute the signatures for each probe-request burst by an individual
device with MAC, M; in the collected trace. We normalize the sig-
nature values between 0 and 1. Finally, the consistency in time-based
signatures, €S for M; is defined as:

M; _ S
ST =1- O-(maximum(cS’,)) 3

We look at the range of consistencies shown by observed MACs
in multiple datasets. Fig. 6 shows the results for the consistency of
chosen time-based signatures. We could observe that &, demonstrates
high consistency in each of the scenarios. On average, the consistency is
greater than 75%, and up to 100% for MAC addresses in the datasets.
The stability of &, across bursts from the same datasets is essential to
be considered an effective signature. We observe that for all scenarios,
we achieve a high consistency, enforcing the stability of &,.

To finalize the mean IFS as the time-based signature, we also check
its discrimination power. We looked at the difference between mean IFS
for each pair of MAC address pairs observed in various datasets. Fig. 7
shows that the difference in mean IFS takes a wide range of values
in the interval (0, 0.2) seconds. This ensures the high discrimination
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power of &, as a signature. Finally, the last observation is that the Mean
IFS inside a burst is device-specific and similar across various datasets.
The mean IFS has a high consistency with respect to a particular
device while is variable over a large range of values when consid-
ering different devices. This affirms the ability of the signature to
discriminate the MAC from a device from the rest of the population.

7.3.2. Frame-based signatures

To compare multi-dimensional frame-based signatures (S,), we
define a similarity metric (£) which demonstrates and validates its
Consistency and the Discriminating power. For two MAC addresses emit-
ted from devices A and B and their respective frame-based signatures,
CS”fA and Sf the similarity, Z is:

8
Z(84, s;?) = Z} isEqual(é’;‘[i],cS’j?[i]) ©))
i=

The function is Equal checks if the corresponding elements of either
signature are equal and are not absent (¢). If this is satisfied, it returns
1, else 0. Intuitively, Z($4, §8) indicates the extent of similar elements
transmitted by both devices.

We investigate the similarity across a large number probe-requests
pairs transmitting the same and different MAC addresses while con-
sidering frames transmitting their real MACs in the Sapienza and
HongKong datasets. We look at the distribution of Z(s, 5 ) for both
the cases in Fig. 8. We observe that the similarity is very high for
probes from the same device (MAC), while it is practically zero for
different MACs. HongKong dataset has relatively diverse values for the
same MACs as Sapienza scenarios due to the absence of certain IE fields
in some of the frames. The absence leads to the highest attainable
similarity value as lower than 8 for some frames.

There is a considerable gap in similarities between a potential true
and false association by the signature, demonstrating the high Discrimi-
nating power of ;. The higher the gap, the easier it is for the signature
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to distinguish between the true and the false associations. Moreover,
signatures from the same MAC, or in this case, the device, show a high
degree of similarity. This also showcases the high consistency of S,
hence validating its effectiveness.

8. Step 4: MAC association

We utilize Algorithm 2 to associate randomized probe-request ad-
dresses. It takes as input the set of appearing and disappearing trails
along with the obtained collection of signatures (&). Algorithm 2
yields a dictionary of MAC pairs (&), denoting the associated random-
ized addresses. The association relies on the correctness of predictions
for accurate associations when considering pairs of disappearing and
appearing MAC trails.

We start with no associated MAC addresses. We sort the appearing
and disappearing trails in time so that we can match each disappearing
trail with a corresponding appearing trail if it is the same advertising
device (7;,’, 7,,/'). We also keep track of associated appearing trails
that are already paired in order to avoid comparing them again while
resolving another conflict (associated).

8.1. Logistic regression predictor

We opted to utilize a logistic regression model for predicting the
degree to which a potential MAC trail pair represents a correct associa-
tion. We choose this model over methods like random forest or CatBoost
for various reasons. It offers interpretability through coefficients that
directly show the impact of predictors on the outcome, making it ideal
for understanding relationships. Logistic regression assumes a linear
relationship between predictors and the log-odds of the outcome, which
can be advantageous when this holds true, ensuring stable performance.
Also, it is computationally efficient for large datasets, contrasting with
more complex models. Additionally, logistic regression’s focus on bi-
nary classification tasks and straightforward feature importance metrics
further supports its suitability for probe-request datasets.

To train this model, we combined frame and time signatures as
features. The first feature, denoted as f1, is computed by determining
the similarity between the representative frames of the conflicting MAC
address trail pair using Eq. (4). We perform this process for each
possible pair of disappearing and appearing MAC trails observed in
the training dataset (é’ff."”,ci’/f.""’). The second feature, denoted as f2,
is derived by calculating the absolute difference between the mean
Inter-Frame Spacing (IFS) periods observed in the trail pair. The logistic
regression predictor is likely to be efficient as we only have a couple
of features with the two classes (true and false associations) distinctly
different due to the high discriminative power of both features (cf.
Section 7.3).

8.2. Resolving randomized MACs

We examine each disappearing trail (¢r,,) one by one from the
set of trails that have been previously sorted in chronological order
(570’,”). To ensure the significance of the signatures, we filter out trails
that are too short by considering only those with at least 4 frames
(MIN_TRAIL_LENGTH). Subsequently, we identify the set of ap-
pearing trails that conflict (€) during the duration (7,") following the
disappearance of the considered MAC trail, tr,,.

For each conflict trail, we obtain the corresponding feature vector
(fuvect) to derive the prediction probabilities from the trained logistic
regression model, &. This yields a probability vector of the size of
the conflicts (7'), indicating the likelihood of the MAC trail pairs
being transmitted from the same device. We then sort this vector in
descending order of probabilities to select the best feasible match.

Although it is possible that some associations may involve a new
device in the sniffing zone rather than a randomized MAC from a
previously seen device, we propose a methodology to address this issue.
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Algorithm 2 MAC address association

1: procedure ADDRESSASSOCIATION(S, T}, 7o)

2 A<

3: Tl-,,’, Tout’ « TimeSort(T;,), TimeSort(T,,,)
4: associated « [False]xlength(Ti;)

> input variables

fl= Similarity(S;’”, s;"“f)
F2= 1l —ulfS, |

7: L « LogisticRegression((f1, f2))

8: for tr,, < Tou,' do
o: if 1r,,,.length > MIN TRAIL LENGTH then
10: C « Conflicts(Ty, str oy To')
11: V<o
12: for ctrail < C do
13: fvect « LogisticFeatures(tr,,, ctrail)
14: V « PredictionProb(L, fuvect)
15: end for
16: V'« Sort(V)
17: for ctrail < C do
18: dseq < SeqNumGap(tr,,, ctrail)
19: if dseq < SEQ_TH & associated[ctrail] !=True then
20: A « (try,, ctrail)
21: associated|ctrail] = True
22: ExitTheLoop()
23: end if
24: end for
25: end if
26: end for
27: return A

28: end procedure

For each conflicting trail (ctrail), we calculate the gap in sequence
numbers (dseq) between this trail and the disappearing trail under
consideration. To ensure accuracy, we establish a threshold for this
sequence number gap (SEQ_T H) within our association algorithm.

To determine an appropriate threshold, we analyze the sequence
number gaps observed across all MAC trails in various datasets, as
illustrated in Fig. 9. We observe that approximately 85% of trails
exhibit a sequence number gap of less than 64. Therefore, we set the
value of SEQ_TH to 64.

For sequence number gaps larger than 64 up to 4095, Fig. 9 shows a
gradual and uniform increase, possibly indicating a device re-entering
the sniffing zone after missing multiple consecutive bursts. Addition-
ally, new devices often appear in the dataset, with their initial frame
having a sequence number randomly distributed within the range [0,
4095]. Hence, in Bleach, we disregard sequence number gaps from
64 onwards.

Finally, we can proceed with the final step of the MAC association
algorithm, which involves linking a newly detected randomized MAC
trail to a previously seen one. If we encounter a conflicting appearing
trail (considered based on their prediction probabilities) that meets the
sequence number threshold and has not been associated before, we
label this MAC as associated and exit the loop to continue with the
next disappearing MAC. If none of the conflicting MACs that appear
meet the SEQ_T H criterion, we assume that it is a disappearing MAC,
representing the last trail observed by that device in the sniffing zone.

9. Evaluation
In this section, we present the evaluation methodology utilized for

Bleach framework before presenting the evaluation of its effective-
ness in associating randomized WiFi MAC addresses.

10
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9.1. Evaluation methodology

We first investigate the efficiency of chosen signatures that were
used as features to train the logistic regression classifier. Then, we
proceed to assess the MAC association capabilities of Bleach.

To evaluate the Bleach’s association performance, we use a variety
of datasets. The first dataset is where we have a ground-truth of MACs
from the same device. These datasets are part of the Sapienza collection
and comprise scenarios like university, mall, trainstation, vaticanl, and
politics1. After validating the framework Bleach with ground-truth
datasets, we utilize the HongKong dataset, which consists of capturing
randomized MACs of devices in a shopping Mall using a large number
of sniffers. This dense dataset contains both devices that transmit
their true (non-randomized) MAC addresses and randomized MACs. We
associate the randomized MAC of HongKong dataset, thus generalizing
the performance of Bleach to the cases with no ground-truth of random
MAC addresses from the same sender.

9.2. Performance of signatures

Since the base of our association framework is the logistic regression
classifier trained with features comprising of the time and the frame-
based signature, the first step of the evaluation process is to evaluate
the performances of such signatures.

Training/test datasets: We train the logistic regression model over
the two features, using the Sapienza datasets due to the access of
ground-truth. For obtaining the ground-truth, we manually randomize
the Sapienza datasets by grouping the MAC addresses per device into
a sequence of bursts using the burst duration (z,).

We assign new unique identifiers to a device after every 4 bursts.
We opt for the same number of bursts per MAC address as in litera-
ture [17] to keep a ground-truth of appearing and disappearing trails in
the dataset. We isolate positive (true association) and negative (false
association) MAC pairs to eventually train the logistic regression model
().

We train the model on university and mall scenarios and observe the
accuracy of the classifier on test sets comprising of the remaining three
datasets: trainstation, vaticanl, and politics1. IE fields and the mean IFS
in the frame and time-based signatures are device-specific and, hence,
are not heavily dependent on the choice of training scenarios. We chose
50k random MAC trails from each dataset for the test. The accuracy
depicts the model’s effectiveness in correctly separating the true and
false associations among the respective disappearing and appearing
MAC trails.

Evaluation metrics: We use three metrics to look at the performance
on the test set: (i) Precision, (ii) Recall, and (iii) F1-score. Precision is
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Table 5
Performance of signatures.
Case Precision Recall F1-score Dataset
False association (negative) 0.79 0.65 0.71 trainstation
0.99 0.67 0.80 vaticanl
0.91 0.61 0.73 politics1
True association (positive) 0.70 0.82 0.76 trainstation
0.75 0.99 0.86 vaticanl
0.70 0.94 0.81 politics1
Table 6
Accuracy in Sapienza datasets.
Scenario Accuracy Scenario Accuracy
university 99.14 trainstation 94.82%
mall 60.89 vaticanl 74.80%
politics1 69.14

the ratio between the True Positives and all the positives, while Recall
shows the proportion of actual positives that were identified correctly.
Fl-score is the Harmonic mean of the Precision and Recall.

Evaluation results: We observe in Table 5 that we achieve an F1-
score up to 86% with a minimum of 71%. This certifies relatively
high Precision and Recall achieved by our signature-based logistic
regression classifier, both in false and true associations. It shows that
the model produces fewer false positives and negatives, demonstrating
its effectiveness. The accuracy of association across a dataset could vary
depending on the number of MAC addresses in a conflict that Algorithm
2 has to resolve. We next discuss this in detail.

9.3. Datasets with ground-truth

In Table 6, we illustrate the accuracy of association obtained in
different contextual scenarios of Sapienza datasets. We define accu-
racy as the percent of correct association of the disappearing trail
with respect to the total number of disappearing trails that Bleach
considered for the address resolution. Considering different scenarios
helps the framework to be robust against (i) a variety of mobile
devices with specific temporal behavior of probe-request bursts, (ii)
high densities of mobile devices around the sniffer, and (iii) diverse
address randomization strategies by the manufacturer.

We observe that the accuracy of association is variable across
datasets, demonstrating the heterogeneity that we expect each of them
to possess. In university scenario, we resolve close to 99% of randomized
address trails, while the train station to exhibits a high accuracy of
close to 95%. Even the highly dense outdoor setting of Vatican city
square (vaticanl) achieves a modest accuracy of around 75%. Finally,
the major indoor scenario of mall and political meeting hall obtain
relatively low accuracy of around 61 and 69%, respectively. We next
explore and reason the performance variability for Bleach and, in
general, any association framework in detail.

We now compare the above results with the state-of-the-art accura-
cies on the Sapienza datasets (shown on Table 3 in Case studies). In the
Mall scenario, the highest accuracy from Bleach (60.89%) is 18.89%
higher than the highest accuracy from the case studies (42%). For the
Trainstation scenario, the highest accuracy from our solution (94.82%)
is 35.82% higher than the highest accuracy from the case studies (59%).
In the Vaticanl scenario, the highest accuracy from Bleach (74.80%) is
34.80% higher than the highest accuracy from the case studies (40%).

Interpreting association accuracy: In the following, we aim to
understand the heterogeneity of datasets as an input to MAC association
frameworks, which cause the fluctuation in performance in time and
across scenarios. As we propose and illustrate in Section 6.1, MAC
association can be abstracted into the resolution of address conflicts €.
% showcase all possible appearing MAC trails that could be associated
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with disappearing ones during various conflict periods T, of the input
dataset. The size of conflicts, |€(7,")| in the dataset captures the
complexity that an association framework has to face.

|&€(T.7)| acts as a generic metric that captures various phenomena
that could potentially affect the performance of address association like:
(i) Inter-arrival times of probe-requests, (ii) Mobility patterns of users
across the capturing sniffers, (iii) Heterogeneity of hardware (mobile
devices), and, (iv) State of devices transmitting probe-requests (like idle
screen, WiFi switched off, power-saving mode on, number of known
access points) [38].

While lower inter-arrival times of frames at sniffer are likely to
inflate the conflict size, short-term stay of the mobile device or repeated
entry-exit in the sniffing zone will make the |%(7.")| high and volatile.
This induces errors in the association as resolution means successfully
isolating correct MAC trails among a large number of possible pairs.
Similarly, various datasets could have differences in the kinds of mo-
bile devices and their state during the probe-request collection. These
factors affect the frequency and pattern of transmitted probes, leading
to variable conflict sizes faced by the resolution framework. Instead of
looking at individual phenomena, conflict sizes act as a common metric
to compare and benchmark the performance of our framework.

Consequently, we look at the performance of Bleach with respect
to |G(T,")| seen in various input datasets. In Fig. 10, we observe the
distribution of conflict sizes resolved in various scenarios. University
and trainstation have relatively lower value of |(T,")|, which should
transform in to better accuracy of association. Indeed, Table 6 validates
the claim as we achieve overall accuracy of 99.14% and 94.82%,
respectively. Vaticanl and politics] have mid-range conflict sizes re-
sulting in slightly lower but good accuracy. In contrast, highly dense
shopping mall scenarios like mall, HK dataset 1, and HK dataset 2
face considerably high conflict sizes for address resolution, resulting
in lower accuracy among the input datasets.

Next, we investigate the variability in association accuracy inside
a single scenario across time. The hypothesis is that even with higher
overall conflict sizes, there might be periods with low |€(T,")|, which
could be exploited by the adversary to resolve randomized addresses
of target user devices. We indeed observe in Fig. 11 that all scenarios
generally have periods with low conflict sizes that yield better accuracy.
While scenarios like university and trainstation perform reasonably well
in all low |€(T.")|, vaticanl and politics] see a wide range of high
conflict sizes causing a depletion in achieved correct MAC associations.

This characterization acts as a benchmark for Bleach in any
new input datasets to the framework with similar or higher expected
values of |Z(T.")|. It ensures the reliability of our framework, unlike
other existing frameworks in the literature, which perform variably in
different contextual scenarios in proprietary datasets.



A.K. Mishra et al.

100+ university
O

c

S 504

v}

v}

< o0- T T T T
> 100 mall
O

o l l I

S5 504

v}

v}

< 0-

trainstation

> 100
(&}
© l l I
S 50
(O]
Q
< Q-
100 vaticanl
(&}
© l l l
S 50
(9}
Q
< 0-
5100 politics1
O
©
S 50
QO
(@]
< 0-
N QA S &S
S \/«ﬁ” B \/’f’ o
S
Conflict size

Fig. 11. Association accuracy in different conflict sizes bins.

9.4. Datasets without ground-truth

For datasets with no ground-truth (here HongKong dataset), we
propose an alternate metric that denotes the correct association of the
MAC addresses. The proposed metric is the sojourn time of a particular
device around the sniffer zone. In the case of MAC randomization,
the sojourn time is the sum of the sojourn times of all associated
randomized MACs plus the time gaps between the associated MAC
trails. More specifically, the device’s sojourn time is the difference
between the timestamps of the first frame of the first associated MAC
trail and the last frame of the last associated MAC trail.

In the case of randomized MACs, which are not associated, the
sojourn times correspond to the lifetimes of each random MAC address
that the device advertises. While in the case of true or non-randomized
MAC addresses, the sojourn time is the time for which the device was
seen in the sniffing zone.

Hypothesis: We propose the hypothesis that for a large number of
users observed by the sniffers, the distribution of the sojourn times
of correctly associated MAC addresses and the true MACs advertised
by users should demonstrate similar behavior in a scenario during a
given period of time. To recall, the true MACs are the physical MAC
addresses of devices that remain static across all sent probe-requests.
The consistent nature of human mobility during that short period,
and the uniform randomization nature of the device’s MAC address
for the large population, ensures that the sojourn times of devices are
independent of MAC randomization.

Observations: In Fig. 12, we present the probability densities of so-
journ times observed when considering probe-requests from HongKong
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Fig. 12. MAC sojourn times before and after association.

dataset that advertise non-randomized, randomized, and associated
MAC addresses. Here, we consider around 9000 randomized and non-
randomized MACs. We observe that randomized MAC addresses have
quite lower sojourn times than the other two, as expected. Devices
change MAC addresses frequently, lowering the time for which one of
its random MAC was seen in the sniffing zone. Next, to validate the
effectiveness of MAC association in Bleach, we look at the closeness
between the sojourn time of devices of non-randomized MAC addresses
of a device and the associated randomized ones. We notice that the
sojourn times of devices after association and those of non-randomized
ones are indeed very similar in their distributions. Perfect overlap is not
possible because of the limits of the association algorithms in highly
dense (in terms of probe-requests) and mobile scenarios like shopping
malls (cf. Fig. 10).

10. Conclusion

MAC address randomization is used by modern WiFi devices, where
randomly generated virtual MAC addresses are used in probe-requests,
instead of true MAC addresses. Though privacy-protecting, MAC ran-
domization hinders the continuation of works such as people counting,
human mobility inference, and crowd flow estimation. We find out
that current address association frameworks underperform and are
unreliable with respect to new input datasets. We henceforth present
Bleach, a framework capable of associating randomized probe-
requests advertised in the observation zone. We implement Bleach
and used extensive datasets in different contextual scenarios which
shows that Bleach is robust and greatly outperforms the state-of-the-
art works in terms of accuracy.
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