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Abstract
Local Differential Privacy (LDP) provides strong, formal privacy
guarantees without requiring a trusted curator, making it a promis-
ing approach for privacy-preserving data collection and analysis.
However, despite extensive research, practitioners may struggle to
understand how to tune LDP parameters and anticipate the impact
on data utility and attack risks for their specific scenarios. To ad-
dress this gap, we demonstrate LDP-Toolbox, the first interactive,
web-based toolbox (implemented in Python) that enables practi-
cal, analytical visualization of trade-offs between privacy loss (𝜀),
utility loss, and vulnerability to attacks. The toolbox supports explo-
ration of these trade-offs using real-world datasets from different
domains; in this demonstration, we focus on discrete personal at-
tributes and location-based scenarios. By providing intuitive, visual
insights, LDP-Toolbox lowers the barrier to deploying LDP in real
applications and helps bridge the gap between theoretical guaran-
tees and practical adoption. The toolbox is open-source on PyPI
(https://pypi.org/project/ldp-toolbox) and a video is available on
our GitHub repository (https://github.com/hharcolezi/ldp-toolbox).
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1 Introduction
With growing public concern over data privacy and strict regu-
lations such as the GDPR, Big tech companies have increasingly
deployed some of their systems under Local Differential Privacy
(LDP) [7] to ensure user-level protection. LDP provides strong,
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formal guarantees by perturbing each user’s data before collec-
tion, enabling population statistics and machine learning without
requiring a trusted curator. Formally, a mechanism M : X →Y
is 𝜀 - LDP if for every measurable 𝑆 ⊆ Y and every 𝑥, 𝑥 ′ ∈ X:
Pr[M(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 Pr[M(𝑥 ′) ∈ 𝑆].

In practice, LDP has been deployed at scale by Big tech com-
panies; for example, Google used LDP to estimate the frequency
of unsafe browser settings, and Apple applies it to measure emoji
usage and app crash rates on iOS devices. Both deployments are
frequency estimation tasks, which remain one of the most widely
studied and deployed use cases for LDP. In frequency estimation,
each user holds a private value 𝑥𝑖 drawn from a finite domain
[𝑘] = {0, . . . , 𝑘 − 1}. The goal is for an untrusted server to recover
an accurate estimate of the population histogram f ∈ R𝑘 , where
𝑓𝑣 =

1
𝑛 #{𝑖 : 𝑥𝑖 = 𝑣}. After collecting the randomized reports {𝑌𝑖 }𝑛𝑖=1,

the server computes an estimate f̂ that minimizes its distance from
f under some utility loss metric.

While much work has focused on maximizing utility, another
fundamental concern in LDP is Data Reconstruction Attacks (DRA),
i.e., the ability of an adversary to infer a user’s true input 𝑥 from a
single privatized report𝑌 [2, 6]. In central differential privacy,mem-
bership inference attacks are a natural concern, as they determine
whether a specific individual is part of a trusted central dataset 𝐷 .
Such an attack is inherently meaningless under LDP, since data
remain under the control of each individual. Here, the primary
privacy risk shifts to input-level inference: can an attacker guess a
user’s original value from their privatized report? DRA is therefore
intrinsic to the LDP threat model and arguably the most direct
and relevant form of privacy leakage in this setting. Moreover, suc-
cessful data reconstruction can serve as a gateway for a variety of
downstream privacy attacks, such as attribute inference (predicting
unknown sensitive features), linkage attacks (matching users across
datasets), or broader profiling threats that apply existing attacks
on the reconstructed data. For all these reasons, DRA is a critical
evaluation metric for assessing the robustness of LDP mechanisms.

However, selecting a protocol that balances utility and robust-
ness against data reconstruction attacks is non-trivial in practice,
especially when utility requirements are subjective, loosely defined,
and highly case-dependent. While Big tech companies can afford
in-house experts to tune protocols and privacy budgets carefully,
smaller organizations may lack practical guidance on how to
select an appropriate protocol and privacy parameter 𝜀 for their
specific use case. Poorly chosen parameters or protocols can result
in high utility loss or increased vulnerability to attacks, making the
deployment of LDP challenging for practitioners. Indeed, selecting
appropriate parameters for LDP protocols has no one-size-fits-all
solution. It depends not only on the choice of 𝜀, but also on the
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(a) Protocol-level trade-off visualization. (b) Custom dataset analysis dashboard.

Figure 1: Overview of the LDP-Toolbox web interface. (a) The Analytical Visualization page enables users to compare privacy-
utility-attackability trade-offs across multiple LDP protocols and data configurations. (b) The Custom Upload page allows users
to upload their own datasets (e.g., tabular, synthetic, location data, etc), experiment with different parameter settings, and
visualize attackability, utility loss, and estimated distributions in an interactive dashboard.

specific LDP protocol and the nature of the underlying data. These
factors make protocol selection and 𝜀-tuning largely ad-hoc and
empirically driven, with little theoretical or practical guidance that
generalizes across tasks, datasets, or needs.

Related Work. A rich literature exists on LDP proto-
cols for frequency estimation and other tasks, and several li-
braries implement these primitives in Python (e.g., pure-LDP [3],
multi-freq-ldpy [1]). However, these tools focus on protocol im-
plementations only, without providing interactive interfaces for
real-world data exploration, metric visualization, or parameter tun-
ing. In the broader differential privacy space, recent efforts have
explored visualization and interactive support for practitioners [9],
but does not target LDP protocols or attackability metrics. To the
best of our knowledge, no prior work combines interactive visual-
ization, protocol selection, and attackability evaluation specifically
for LDP. A practical toolbox is therefore needed to automatically
benchmark utility and attackability trade-offs across protocols, pa-
rameters, and datasets, a gap which our demonstration paper fills.

Contributions. In this paper, we demonstrate LDP-Toolbox,
the first benchmarking web-based system for LDP protocols that
evaluates both utility and attackability in an integrated framework.
The toolbox offers comprehensive benchmarking across multiple
protocols and data configurations, providing practitioners with
clear, visual insights into the trade-offs between privacy guarantees
and practical performance. Designed for usability, it includes a
ready-to-use, customizable data loader, flexible parameter tuning,
and intuitive visualizations to support informed decision-making.
The toolbox is easily installed via pip install ldp-toolbox,
lowering the barrier to adoption. We demonstrate the functionality
of LDP-Toolbox on two representative frequency estimation tasks
using real-world discrete personal attribute data and location-based
time-series data, showcasing its versatility across applications.

2 LDP-Toolbox
We develop LDP-Toolbox as an interactive interface via Python
Dash, composed of two main components. The first is a benchmark

visualization interface that provides a global overview of utility
(MSE), attackability (vulnerability to reconstruction attacks), and
their trade-offs across eight standard LDP protocols [2]: GRR, OUE,
SUE, OLH, BLH, SS, SHE, and THE. The second interface allows users
to upload their own dataset and perform protocol-specific analysis
based on their selected utility metrics and privacy tolerance range.

2.1 Analytical Visualization
The objective of this interface is to provide a global overview of
the behavior of various LDP protocols from a predefined set, with
respect to utility, attackability, and the trade-offs between them.
The visualization interface yields the plots shown in Figure 1a.
Both utility loss, quantified by the expected mean squared error
(MSE), and attackability, measured by the expected success rate
of data reconstruction attacks (DRA) using optimal strategies, can
be expressed analytically for each protocol [2]. These expressions
are functions of three key parameters: domain size (𝑘), number of
users (𝑛), and privacy budget (𝜀). We allow users to choose 𝑘 , 𝑛,
and a range of 𝜀 values, then plot how each protocol behaves as 𝜀
increases. This enables users to compare how quickly a protocol
becomes more vulnerable (higher DRA) or loses utility (higher MSE)
as privacy decreases (higher 𝜀). The third graph visualizes the Pareto
frontier between utility loss and attackability. Intuitively, a protocol
demonstrates a better privacy-utility trade-off if it approaches the
origin point (0,0), i.e., showing minimal variation along both axes.

2.2 Custom Dataset Analysis
In the second interface, users can upload their own dataset and per-
formmore flexible and interactive analyses in four steps. The layout
is shown in Figure 1b, with each step numbered at the bottom.

Step 1○ Upload and Set Parameters. Users can upload their
dataset in CSV format, with each row representing a data record
and each column corresponding to an attribute. The attributes
are automatically detected and populated in a dropdown menu,
allowing the user to select which attribute they wish to perturb and
estimate the histogram. The domain size 𝑘 is also automatically
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computed based on the data, but it can be customized by checking
a box and manually entering a minimum and maximum value,
overriding the default range if needed. An additional checkbox
allows users to specify whether the dataset contains location data,
in which case the interface will generate heatmaps in the output
visualization. Users can also adjust the percentage of individuals to
include if they wish to focus on a random subset of the data.

Next, users select the LDP protocols they wish to evaluate and
define a privacy budget range (𝜀). Since it is often difficult for non-
experts to choose an exact value for 𝜀, the interface allows users
to input a range instead. The system then evaluates three repre-
sentative points within this range: the minimum, mean, and max-
imum. Once configured, clicking the “Compute” button launches
the backend process to calculate the metrics. Unlike the Analytical
Visualization page, these calculations are performed directly on the
user-uploaded, customized dataset.

Step 2○ and 3○ Visualize Benchmark Results. Once com-
putation is complete, the attackability results for each selected
protocol are displayed for the three privacy budget values within
the user-defined 𝜀 range. These attackability plots show the empir-
ical reconstruction rate, helping users assess which protocols are
more vulnerable to data reconstruction under their specific dataset
and parameter settings. For utility loss, users can choose from mul-
tiple histogram distance metrics depending on their needs:MSE,
RMSE, KL-divergence, and Kendall rank correlation. Each
utility metric highlights different aspects of distribution similarity,
enabling practitioners to align the evaluation with the requirements
of their target application. The results are presented in a format
similar to the attackability plots, allowing side-by-side comparison
of protocols and privacy budgets.

Step 4○ Select and Compare Results. Based on the two di-
agrams, users can decide which protocol and which 𝜀 level best
suit their privacy-utility trade-off requirements. After selecting a
protocol and privacy level, the interface displays a comparison be-
tween the original and the estimated distributions of the uploaded
data. This offers a concrete visualization of how the frequency esti-
mation is affected by perturbation. For spatial datasets, a heatmap
comparison is also shown to capture space effects better. Finally,
users may iterate by refining protocol choices or parameter settings
until the desired balance is achieved.

3 Demonstration
The audience will experience the demonstration through: (1) A
poster outlining the motivation, the architecture of LDP-Toolbox,
its usability-focused design, and the evaluation workflow for com-
paring privacy-utility trade-offs. (2) Attendees will interact with a
live system to explore and compare different LDP mechanisms in
practice. They will be able to visualize estimated distributions, util-
ity loss, and attack risks using real-world examples. Specifically, we
demonstrate the capabilities of LDP-Toolbox through the following
representative frequency estimation use cases.

Tabular Data with Discrete Attributes. Tabular datasets con-
taining discrete attributes, such as age, gender, or preferences, are
widely collected and analyzed across many real-world applications,
including web services, recommender systems, and social networks.
A common objective is to release histograms or joint distributions

of these attributes to support population-level insights, personal-
ization, or policy decisions, while still preserving privacy. However,
these attributes are often sensitive, and reconstruction attacks can
recover individual records from noisy values [5]. Small noise often
fails to prevent leakage in multi-attribute data, making it difficult
for non-experts to balance privacy and utility via 𝜀-selection. We
illustrate this use case using a subset of the U.S. Census dataset,
which includes 125,789 individuals and 14 attributes. With our tool-
box, users can generate locally differentially private reports using
protocols and parameter settings that are resistant to reconstruc-
tion attacks. They can then validate custom utility constraints by
comparing the aggregated, estimated results to the original data,
e.g., ensuring that utility loss remains acceptable under metrics
such as MSE, RMSE, KL-divergence, or Kendall’s rank correlation.

Time-Series Location Data. Spatiotemporal location data are
valuable for applications such as urban planning, transportation,
and epidemiology, but pose significant privacy risks due to their
fine-grained and highly correlated nature. Even when protected
with differential privacy, location datasets can remain vulnera-
ble to reconstruction attacks, which amplify threats such as tra-
jectory recovery [8], re-identification [4], or semantic inference
(e.g., home/workplace inference). We illustrate this scenario us-
ing YJMob100K (https://zenodo.org/records/10142719), a real-world
dataset capturing mobility traces in a 200×200 grid at 30-minute
intervals for 100,000 individuals in a Japanese city. LDP-Toolbox
allows users to upload such spatial data, apply LDP protocols, and
visualize the impact of perturbation. As shown in Figure 1b, users
can select noise mechanisms and privacy budgets that balance util-
ity (e.g., identifying top-visited locations or temporal peaks) with
protection against reconstruction attacks. The system provides
interpretable spatiotemporal heatmaps to compare original and esti-
mated distributions for any given time slot, helping practitioners to
assess how well patterns are preserved while maintaining privacy.
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